Suppr超能文献

一种基于大规模肠道微生物组和人类基因表达数据开发的精确衰老时钟。

An accurate aging clock developed from large-scale gut microbiome and human gene expression data.

作者信息

Gopu Vishakh, Camacho Francine R, Toma Ryan, Torres Pedro J, Cai Ying, Krishnan Subha, Rajagopal Sathyapriya, Tily Hal, Vuyisich Momchilo, Banavar Guruduth

机构信息

Viome Research Institute, Viome Life Sciences, Inc, Seattle, NY, USA.

出版信息

iScience. 2023 Dec 2;27(1):108538. doi: 10.1016/j.isci.2023.108538. eCollection 2024 Jan 19.

Abstract

Accurate measurement of the biological markers of the aging process could provide an "aging clock" measuring predicted longevity and enable the quantification of the effects of specific lifestyle choices on healthy aging. Using machine learning techniques, we demonstrate that chronological age can be predicted accurately from (1) the expression level of human genes in capillary blood and (2) the expression level of microbial genes in stool samples. The latter uses a very large metatranscriptomic dataset, stool samples from 90,303 individuals, which arguably results in a higher quality microbiome-aging model than prior work. Our analysis suggests associations between biological age and lifestyle/health factors, e.g., people on a paleo diet or with IBS tend to have higher model-predicted ages and people on a vegetarian diet tend to have lower model-predicted ages. We delineate the key pathways of systems-level biological decline based on the age-specific features of our model.

摘要

准确测量衰老过程的生物标志物可以提供一个“衰老时钟”,用于测量预测的寿命,并能够量化特定生活方式选择对健康衰老的影响。利用机器学习技术,我们证明可以从以下两个方面准确预测实际年龄:(1)人类基因在毛细血管血中的表达水平,以及(2)粪便样本中微生物基因的表达水平。后者使用了一个非常大的宏转录组数据集,即来自90303个人的粪便样本,这可能会产生一个比先前研究质量更高的微生物组-衰老模型。我们的分析表明生物年龄与生活方式/健康因素之间存在关联,例如,采用古法饮食或患有肠易激综合征的人往往具有较高的模型预测年龄,而采用素食饮食的人往往具有较低的模型预测年龄。我们根据模型的年龄特异性特征描绘了系统水平生物衰退的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d73e/10790003/f8782c46ca99/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验