Suppr超能文献

通过CRISPR/Cas基因编辑,利用转座酶、重组酶和整合酶进行长序列插入。

Long sequence insertion via CRISPR/Cas gene-editing with transposase, recombinase, and integrase.

作者信息

Wang Xiaotong, Xu Guangxue, Johnson William A, Qu Yuanhao, Yin Di, Ramkissoon Nurupa, Xiang Hong, Cong Le

机构信息

Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Curr Opin Biomed Eng. 2023 Dec;28. doi: 10.1016/j.cobme.2023.100491. Epub 2023 Jul 22.

Abstract

CRISPR/Cas-based gene-editing technologies have emerged as one of the most transformative tools in genome science over the past decade, providing unprecedented possibilities for both fundamental and translational research. Following the initial wave of innovations for gene knock-out, epigenetic/RNA modulation, and nickase-mediated base-editing, recent efforts have pivoted towards long-sequence gene editing- specifically, the insertion of large fragments (>1 kb) into the endogenous genome. In this review, we survey the development of these CRISPR/Cas-based sequence insertion methodologies in conjunction with the emergence of novel families of editing enzymes, such as transposases, single-stranded DNA-annealing proteins, recombinases, and integrases. Despite facing a number of challenges, this field continues to evolve rapidly and holds the potential to catalyze a new wave of revolutionary biomedical applications.

摘要

在过去十年中,基于CRISPR/Cas的基因编辑技术已成为基因组科学中最具变革性的工具之一,为基础研究和转化研究提供了前所未有的可能性。继基因敲除、表观遗传/RNA调控和切口酶介导的碱基编辑的首轮创新之后,最近的研究工作已转向长序列基因编辑——具体而言,是将大片段(>1 kb)插入内源性基因组。在本综述中,我们结合转座酶、单链DNA退火蛋白、重组酶和整合酶等新型编辑酶家族的出现,综述了这些基于CRISPR/Cas的序列插入方法的发展。尽管面临诸多挑战,但该领域仍在迅速发展,并有潜力催生出新一轮革命性的生物医学应用。

相似文献

1
Long sequence insertion via CRISPR/Cas gene-editing with transposase, recombinase, and integrase.
Curr Opin Biomed Eng. 2023 Dec;28. doi: 10.1016/j.cobme.2023.100491. Epub 2023 Jul 22.
2
3
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.
4
Next-generation CRISPR technology for genome, epigenome and mitochondrial editing.
Transgenic Res. 2024 Oct;33(5):323-357. doi: 10.1007/s11248-024-00404-x. Epub 2024 Aug 19.
5
[Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies].
Yi Chuan. 2019 May 20;41(5):422-429. doi: 10.16288/j.yczz.18-345.
6
Recent advances in CRISPR-Cas9-based genome insertion technologies.
Mol Ther Nucleic Acids. 2024 Feb 5;35(1):102138. doi: 10.1016/j.omtn.2024.102138. eCollection 2024 Mar 12.
7
[Recent advances in CRISPR-related transposable elements].
Sheng Wu Gong Cheng Xue Bao. 2022 Dec 25;38(12):4371-4384. doi: 10.13345/j.cjb.220197.
8
The next generation of CRISPR-Cas technologies and applications.
Nat Rev Mol Cell Biol. 2019 Aug;20(8):490-507. doi: 10.1038/s41580-019-0131-5.
9
Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
Methods. 2017 May 15;121-122:77-85. doi: 10.1016/j.ymeth.2017.03.005. Epub 2017 Mar 12.

引用本文的文献

3
CRISPR-Cas Systems in the Fight Against Antimicrobial Resistance: Current Status, Potentials, and Future Directions.
Infect Drug Resist. 2024 Nov 26;17:5229-5245. doi: 10.2147/IDR.S494327. eCollection 2024.
4
The design and engineering of synthetic genomes.
Nat Rev Genet. 2025 May;26(5):298-319. doi: 10.1038/s41576-024-00786-y. Epub 2024 Nov 6.
5
Genome editing with DNA-dependent polymerases.
Nat Biotechnol. 2025 Jun;43(6):865-867. doi: 10.1038/s41587-024-02372-3.
6
A programmable seekRNA guides target selection by IS1111 and IS110 type insertion sequences.
Nat Commun. 2024 Jun 19;15(1):5235. doi: 10.1038/s41467-024-49474-9.

本文引用的文献

1
A highly efficient transgene knock-in technology in clinically relevant cell types.
Nat Biotechnol. 2024 Mar;42(3):458-469. doi: 10.1038/s41587-023-01779-8. Epub 2023 May 1.
2
Precise integration of large DNA sequences in plant genomes using PrimeRoot editors.
Nat Biotechnol. 2024 Feb;42(2):316-327. doi: 10.1038/s41587-023-01769-w. Epub 2023 Apr 24.
3
Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription.
Science. 2023 Apr 21;380(6642):301-308. doi: 10.1126/science.adg7883. Epub 2023 Apr 6.
4
Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases.
Nat Biotechnol. 2023 Jul;41(7):968-979. doi: 10.1038/s41587-022-01574-x. Epub 2023 Jan 2.
5
Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.
Nat Biotechnol. 2023 Apr;41(4):500-512. doi: 10.1038/s41587-022-01527-4. Epub 2022 Nov 24.
6
dCas9-based gene editing for cleavage-free genomic knock-in of long sequences.
Nat Cell Biol. 2022 Feb;24(2):268-278. doi: 10.1038/s41556-021-00836-1. Epub 2022 Feb 10.
7
Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.
Nat Biotechnol. 2022 May;40(5):731-740. doi: 10.1038/s41587-021-01133-w. Epub 2021 Dec 9.
8
Metagenomic discovery of CRISPR-associated transposons.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2112279118.
10
CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering.
Nat Biotechnol. 2021 Apr;39(4):480-489. doi: 10.1038/s41587-020-00745-y. Epub 2020 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验