Suppr超能文献

青光眼发病机制中的胶质细胞代谢改变。

Glial metabolic alterations during glaucoma pathogenesis.

作者信息

Rombaut Anne, Brautaset Rune, Williams Pete A, Tribble James R

机构信息

Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.

出版信息

Front Ophthalmol (Lausanne). 2023 Nov 28;3:1290465. doi: 10.3389/fopht.2023.1290465. eCollection 2023.

Abstract

Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.

摘要

青光眼是不可逆性失明的主要原因。目前的治疗选择有限,且往往只能减缓疾病进展。代谢功能障碍最近被认为是青光眼病理生理学中的一个关键早期和持续性机制。已在视网膜神经节细胞中鉴定并治疗了几种内在代谢功能障碍,以提供神经保护。越来越多的临床前和临床证据证实,青光眼的代谢改变广泛存在,发生在视觉系统组织、眼内液、血液/血清以及基因组和线粒体DNA水平。这表明代谢功能障碍并不局限于视网膜神经节细胞,视网膜神经节细胞外的代谢改变可能导致其代谢受损。在正常生理条件下,视网膜神经节细胞依赖于胶质细胞的代谢支持,但胶质细胞中代谢功能障碍的影响尚未得到充分研究。我们强调新出现的证据,这些证据表明青光眼患者的胶质细胞内发生了代谢改变,以及这可能如何影响神经胶质细胞的代谢耦合和视网膜神经节细胞的代谢易损性。在与青光眼有共同特征的其他神经退行性疾病中,已鉴定出其他几种胶质细胞代谢改变,这表明青光眼可能存在类似的机制和治疗靶点。

相似文献

1
Glial metabolic alterations during glaucoma pathogenesis.
Front Ophthalmol (Lausanne). 2023 Nov 28;3:1290465. doi: 10.3389/fopht.2023.1290465. eCollection 2023.
2
Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets.
Front Neurol. 2021 Mar 16;12:624983. doi: 10.3389/fneur.2021.624983. eCollection 2021.
3
The Interaction Between Microglia and Macroglia in Glaucoma.
Front Neurosci. 2021 May 28;15:610788. doi: 10.3389/fnins.2021.610788. eCollection 2021.
4
Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage.
Front Cell Neurosci. 2024 Jan 25;18:1354569. doi: 10.3389/fncel.2024.1354569. eCollection 2024.
5
Activated retinal glia mediated axon regeneration in experimental glaucoma.
Neurobiol Dis. 2012 Jan;45(1):243-52. doi: 10.1016/j.nbd.2011.08.008. Epub 2011 Aug 10.
6
Glia-neuron interactions in the mammalian retina.
Prog Retin Eye Res. 2016 Mar;51:1-40. doi: 10.1016/j.preteyeres.2015.06.003. Epub 2015 Jun 23.
7
[Aiming for zero blindness].
Nippon Ganka Gakkai Zasshi. 2015 Mar;119(3):168-93; discussion 194.
8
[Pathogenic roles of retinal glia in glaucoma].
Nihon Yakurigaku Zasshi. 2020;155(2):87-92. doi: 10.1254/fpj.19120.
9
Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma.
Front Ophthalmol (Lausanne). 2024 Jan 3;3:1303649. doi: 10.3389/fopht.2023.1303649. eCollection 2023.
10
Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma.
J Neuroinflammation. 2021 Dec 24;18(1):303. doi: 10.1186/s12974-021-02366-x.

引用本文的文献

1
Multi-omics integration predicts 17 disease incidences in the UK Biobank.
medRxiv. 2025 Aug 5:2025.08.01.25332841. doi: 10.1101/2025.08.01.25332841.
3
Retinal Vascular Fingerprints as Novel Biomarkers for Primary Angle Closure Disease Progression.
Ophthalmol Sci. 2025 Jun 9;5(6):100848. doi: 10.1016/j.xops.2025.100848. eCollection 2025 Nov-Dec.
5
Aqueous humor metabolomic profiling identifies a distinct signature in pseudoexfoliation syndrome.
Front Mol Biosci. 2025 Jan 23;11:1487115. doi: 10.3389/fmolb.2024.1487115. eCollection 2024.
6
Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies.
Biology (Basel). 2024 Dec 9;13(12):1030. doi: 10.3390/biology13121030.

本文引用的文献

1
ATP-P2XR-mediated microglia senescence aggravates retinal ganglion cell injury in chronic ocular hypertension.
J Neuroinflammation. 2023 Jul 31;20(1):180. doi: 10.1186/s12974-023-02855-1.
2
Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering.
Mol Aspects Med. 2023 Aug;92:101193. doi: 10.1016/j.mam.2023.101193. Epub 2023 Jun 16.
3
Plasma metabolite profile for primary open-angle glaucoma in three US cohorts and the UK Biobank.
Nat Commun. 2023 May 19;14(1):2860. doi: 10.1038/s41467-023-38466-w.
5
Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration.
Nat Metab. 2023 Mar;5(3):445-465. doi: 10.1038/s42255-023-00756-4. Epub 2023 Mar 23.
6
Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease.
Front Cell Neurosci. 2023 Jan 26;17:1106547. doi: 10.3389/fncel.2023.1106547. eCollection 2023.
7
NAD salvage pathway machinery expression in normal and glaucomatous retina and optic nerve.
Acta Neuropathol Commun. 2023 Jan 22;11(1):18. doi: 10.1186/s40478-023-01513-0.
8
Aged lipid-laden microglia display impaired responses to stroke.
EMBO Mol Med. 2023 Feb 8;15(2):e17175. doi: 10.15252/emmm.202217175. Epub 2022 Dec 21.
9
The heterogeneity of astrocytes in glaucoma.
Front Neuroanat. 2022 Nov 17;16:995369. doi: 10.3389/fnana.2022.995369. eCollection 2022.
10
Trabecular Meshwork Mitochondrial Function and Oxidative Stress: Clues to Racial Disparities of Glaucoma.
Ophthalmol Sci. 2021 Dec 24;2(1):100107. doi: 10.1016/j.xops.2021.100107. eCollection 2022 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验