Suppr超能文献

T细胞刺激平台开发的新兴方法。

Emerging approaches for T cell-stimulating platform development.

作者信息

Ariail Emily, Garcia Espinoza Nikol, Stephenson A Carson, Spangler Jamie B

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Cell Syst. 2024 Dec 18;15(12):1198-1208. doi: 10.1016/j.cels.2024.11.007.

Abstract

T cells are key mediators of the adaptive immune response, playing both direct and supporting roles in the destruction of foreign pathogenic threats as well as pathologically transformed host cells. The natural process through which T cells are activated requires coordinated molecular interactions between antigen-presenting cells and T cells. Promising advances in biomaterial design have catalyzed the development of artificial platforms that mimic the natural process of T cell stimulation, both to bolster the performance of cell therapies by activating T cells ex vivo prior to adoptive cell transfer and to directly activate T cells in vivo as off-the-shelf treatments. This review focuses on innovative strategies in T cell-stimulating platform design for applications in cancer therapy. We specifically highlight progress in bead-based artificial antigen-presenting cell engineering, hydrogel-based scaffolds, DNA-based systems, alternative polymeric strategies, and soluble activation approaches. Collectively, these advances are expanding the repertoire of tools for targeted immune activation.

摘要

T细胞是适应性免疫反应的关键介质,在破坏外来致病威胁以及病理转化的宿主细胞方面发挥着直接和支持作用。T细胞被激活的自然过程需要抗原呈递细胞和T细胞之间协调的分子相互作用。生物材料设计方面的有前景的进展推动了人工平台的发展,这些平台模仿T细胞刺激的自然过程,既可以通过在过继性细胞转移前体外激活T细胞来增强细胞疗法的性能,也可以作为现成的治疗方法在体内直接激活T细胞。本综述重点关注用于癌症治疗的T细胞刺激平台设计的创新策略。我们特别强调基于珠子的人工抗原呈递细胞工程、基于水凝胶的支架、基于DNA的系统、替代聚合物策略和可溶性激活方法方面的进展。总的来说,这些进展正在扩大靶向免疫激活工具的范围。

相似文献

1
Emerging approaches for T cell-stimulating platform development.
Cell Syst. 2024 Dec 18;15(12):1198-1208. doi: 10.1016/j.cels.2024.11.007.
2
Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy.
Biomaterials. 2021 Jan;268:120584. doi: 10.1016/j.biomaterials.2020.120584. Epub 2020 Dec 5.
3
Engineered red blood cells as an off-the-shelf allogeneic anti-tumor therapeutic.
Nat Commun. 2021 May 11;12(1):2637. doi: 10.1038/s41467-021-22898-3.
4
In Vivo Stimulation of Therapeutic Antigen-Specific T Cells in an Artificial Lymph Node Matrix.
Adv Mater. 2024 Jun;36(23):e2310043. doi: 10.1002/adma.202310043. Epub 2024 Mar 1.
5
Nanoscale artificial antigen presenting cells for cancer immunotherapy.
Mol Immunol. 2018 Jun;98:13-18. doi: 10.1016/j.molimm.2018.02.016. Epub 2018 Mar 7.
6
Particle-Based Artificial Antigen-Presenting Cell Systems for T Cell Activation in Adoptive T Cell Therapy.
ACS Nano. 2024 Mar 26;18(12):8571-8599. doi: 10.1021/acsnano.3c10180. Epub 2024 Mar 14.
7
Generation of Antitumor T Cells For Adoptive Cell Therapy With Artificial Antigen Presenting Cells.
J Immunother. 2020 Apr;43(3):79-88. doi: 10.1097/CJI.0000000000000306.
8
Adoptive immunotherapy: good habits instilled at youth have long-term benefits.
Immunol Res. 2008;42(1-3):182-96. doi: 10.1007/s12026-008-8070-9.
9
Biomaterial-Based Activation and Expansion of Tumor-Specific T Cells.
Front Immunol. 2019 May 3;10:931. doi: 10.3389/fimmu.2019.00931. eCollection 2019.
10
Engineering an Artificial T-Cell Stimulating Matrix for Immunotherapy.
Adv Mater. 2019 Jun;31(23):e1807359. doi: 10.1002/adma.201807359. Epub 2019 Apr 10.

引用本文的文献

1
Topography-based implants for bone regeneration: Design, biological mechanism, and therapeutics.
Mater Today Bio. 2025 Jul 13;34:102066. doi: 10.1016/j.mtbio.2025.102066. eCollection 2025 Oct.

本文引用的文献

1
In Vivo Stimulation of Therapeutic Antigen-Specific T Cells in an Artificial Lymph Node Matrix.
Adv Mater. 2024 Jun;36(23):e2310043. doi: 10.1002/adma.202310043. Epub 2024 Mar 1.
3
Direct In Vivo Activation of T Cells with Nanosized Immunofilaments Inhibits Tumor Growth and Metastasis.
ACS Nano. 2023 Jul 11;17(13):12101-12117. doi: 10.1021/acsnano.2c11884. Epub 2023 Jun 20.
5
Engineered cell-based therapies in ex vivo ready-made CellDex capsules have therapeutic efficacy in solid tumors.
Biomed Pharmacother. 2023 Jun;162:114665. doi: 10.1016/j.biopha.2023.114665. Epub 2023 Apr 14.
6
Cell-Sized Lipid Vesicles as Artificial Antigen-Presenting Cells for Antigen-Specific T Cell Activation.
Adv Healthc Mater. 2023 May;12(12):e2203163. doi: 10.1002/adhm.202203163. Epub 2023 Jan 31.
7
Dendritic Cell Membrane-Derived Nanovesicles for Targeted T Cell Activation.
ACS Omega. 2022 Dec 9;7(50):46222-46233. doi: 10.1021/acsomega.2c04420. eCollection 2022 Dec 20.
8
Systemic enhancement of antitumour immunity by peritumourally implanted immunomodulatory macroporous scaffolds.
Nat Biomed Eng. 2023 Jan;7(1):56-71. doi: 10.1038/s41551-022-00977-0. Epub 2022 Dec 22.
9
From thymus to tissues and tumors: A review of T-cell biology.
J Allergy Clin Immunol. 2023 Jan;151(1):81-97. doi: 10.1016/j.jaci.2022.10.011. Epub 2022 Oct 19.
10
Price and Prejudice? The Value of Chimeric Antigen Receptor (CAR) T-Cell Therapy.
Int J Environ Res Public Health. 2022 Sep 28;19(19):12366. doi: 10.3390/ijerph191912366.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验