Suppr超能文献

参与控制骨骼肌纤维收缩和代谢特性的分子途径作为杜氏肌营养不良症的潜在治疗靶点。

Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy.

作者信息

Bonato Agnese, Raparelli Giada, Caruso Maurizia

机构信息

Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy.

出版信息

Front Physiol. 2024 Dec 9;15:1496870. doi: 10.3389/fphys.2024.1496870. eCollection 2024.

Abstract

Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.

摘要

杜兴氏肌营养不良症(DMD)由编码抗肌萎缩蛋白的基因突变引起,抗肌萎缩蛋白是一种肌膜下蛋白,其缺失会导致肌纤维膜对收缩诱导损伤的易感性增加。这会导致钙内流增加、氧化应激和线粒体功能障碍,进而引发慢性炎症、肌纤维变性,并降低肌肉再生能力。在DMD患者和DMD小鼠模型中,快速糖酵解肌纤维已被证明比慢氧化纤维更容易受到机械应力的影响。因此,将骨骼肌重塑为更慢、更具氧化型的表型可能是一种相关的治疗方法,以保护营养不良的肌肉免于退化,并提高基于基因和细胞的治疗效果。慢氧化肌纤维对DMD病理的抗性部分归因于其较高的抗肌萎缩蛋白表达;然而,慢氧化纤维还有其他特征可能有助于其增强的抗损伤能力,包括收缩速度降低、抗疲劳性、毛细血管密度增加、线粒体活性提高、细胞能量需求降低。本综述重点关注那些在DMD临床前模型中,通过基因或药理学调节已被证明可改善营养不良病理,同时促进骨骼肌纤维向更慢、更具氧化型表型转变的信号通路和调节因子。

相似文献

7
Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
Exp Physiol. 2014 Apr;99(4):675-87. doi: 10.1113/expphysiol.2013.077255. Epub 2014 Jan 17.
9
Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6080-6085. doi: 10.1073/pnas.1703556114. Epub 2017 May 22.
10
Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis.
Am J Physiol Cell Physiol. 2014 Jul 1;307(1):C66-82. doi: 10.1152/ajpcell.00357.2013. Epub 2014 Apr 23.

本文引用的文献

1
Extreme Tolerance of Extraocular Muscles to Diseases and Aging: Why and How?
Int J Mol Sci. 2024 May 3;25(9):4985. doi: 10.3390/ijms25094985.
3
4
Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review.
BioDrugs. 2024 Jan;38(1):95-119. doi: 10.1007/s40259-023-00632-3. Epub 2023 Nov 2.
5
Therapeutic approaches for Duchenne muscular dystrophy.
Nat Rev Drug Discov. 2023 Nov;22(11):917-934. doi: 10.1038/s41573-023-00775-6. Epub 2023 Aug 31.
6
Duchenne muscular dystrophy: disease mechanism and therapeutic strategies.
Front Physiol. 2023 Jun 26;14:1183101. doi: 10.3389/fphys.2023.1183101. eCollection 2023.
8
Duchenne muscular dystrophy: pathogenesis and promising therapies.
J Neurol. 2023 Aug;270(8):3733-3749. doi: 10.1007/s00415-023-11796-x. Epub 2023 Jun 1.
9
Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1.
Science. 2023 Apr 21;380(6642):eabj5559. doi: 10.1126/science.abj5559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验