Suppr超能文献

结肠癌中肿瘤浸润淋巴细胞(TILs)的病理组学图像分析

Pathomics Image Analysis of Tumor Infiltrating Lymphocytes (TILs) in Colon Cancer.

作者信息

Zhang Yuwei, Abousamra Shahira, Hasan Mahmudul, Torre-Healy Luke, Krichevsky Spencer, Shrestha Sampurna, Bremer Erich, Oldridge Derek A, Rech Andrew J, Furth Emma E, Bocklage Therese J, Levens Justin S, Hands Isaac, Durbin Erich B, Samaras Dimitris, Kurc Tahsin, Saltz Joel H, Gupta Rajarsi

出版信息

Res Sq. 2025 Apr 1:rs.3.rs-6173056. doi: 10.21203/rs.3.rs-6173056/v1.

Abstract

We developed a deep learning Pathomics image analysis workflow to generate spatial Tumor-TIL maps to visualize and quantify the abundance and spatial distribution of tumor infiltrating lymphocytes (TILs) in colon cancer. Colon cancer and lymphocyte detection in hematoxylin and eosin (H&E) stained whole slide images (WSIs) has revealed complex immuno-oncologic interactions that form TIL-rich and TIL-poor tumor habitats, which are unique in each patient sample. We compute Tumor%, total lymphocyte%, and TILs% as the proportion of the colon cancer microenvironment occupied by intratumoral lymphocytes for each WSI. Kaplan-Meier survival analyses and multivariate Cox regression were utilized to evaluate the prognostic significance of TILs% as a Pathomics biomarker. High TILs% was associated with improved overall survival (OS) and progression-free interval (PFI) in localized and metastatic colon cancer and other clinicopathologic variables, supporting the routine use of Pathomics Tumor-TIL mapping in biomedical research, clinical trials, laboratory medicine, and precision oncology.

摘要

我们开发了一种深度学习病理组学图像分析工作流程,以生成空间肿瘤浸润淋巴细胞(TIL)图谱,用于可视化和量化结肠癌中肿瘤浸润淋巴细胞(TIL)的丰度和空间分布。在苏木精和伊红(H&E)染色的全切片图像(WSI)中进行结肠癌和淋巴细胞检测,揭示了形成富含TIL和缺乏TIL的肿瘤微环境的复杂免疫肿瘤学相互作用,这些微环境在每个患者样本中都是独特的。我们计算每个WSI中肿瘤内淋巴细胞占据的结肠癌微环境比例,即肿瘤占比、总淋巴细胞占比和TIL占比。采用Kaplan-Meier生存分析和多变量Cox回归来评估TIL占比作为病理组学生物标志物的预后意义。高TIL占比与局限性和转移性结肠癌的总生存期(OS)改善以及无进展生存期(PFI)改善以及其他临床病理变量相关,支持在生物医学研究、临床试验、检验医学和精准肿瘤学中常规使用病理组学肿瘤-TIL图谱。

相似文献

1
Pathomics Image Analysis of Tumor Infiltrating Lymphocytes (TILs) in Colon Cancer.
Res Sq. 2025 Apr 1:rs.3.rs-6173056. doi: 10.21203/rs.3.rs-6173056/v1.
2
Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression.
Cancers (Basel). 2022 Apr 26;14(9):2148. doi: 10.3390/cancers14092148.
3
Theragnostic significance of tumor-infiltrating lymphocytes and Ki67 in BRAFV600-mutant metastatic melanoma (BRIM-3 trial).
Curr Probl Cancer. 2022 Jun;46(3):100862. doi: 10.1016/j.currproblcancer.2022.100862. Epub 2022 Apr 2.
4
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer.
Front Oncol. 2022 Feb 16;11:806603. doi: 10.3389/fonc.2021.806603. eCollection 2021.
5
AI-based tumor-infiltrating lymphocyte scoring system for assessing HCC prognosis in patients undergoing liver resection.
JHEP Rep. 2024 Nov 12;7(2):101270. doi: 10.1016/j.jhepr.2024.101270. eCollection 2025 Feb.
9
Tumor-Infiltrating Lymphocyte Recognition in Primary Melanoma by Deep Learning Convolutional Neural Network.
Am J Pathol. 2023 Dec;193(12):2099-2110. doi: 10.1016/j.ajpath.2023.08.013. Epub 2023 Sep 20.

本文引用的文献

1
Spatial distance between tumor and lymphocyte can predict the survival of patients with resectable lung adenocarcinoma.
Heliyon. 2024 May 10;10(10):e30779. doi: 10.1016/j.heliyon.2024.e30779. eCollection 2024 May 30.
2
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4.
3
TCGA-Reports: A machine-readable pathology report resource for benchmarking text-based AI models.
Patterns (N Y). 2024 Feb 21;5(3):100933. doi: 10.1016/j.patter.2024.100933. eCollection 2024 Mar 8.
6
Colorectal Cancer Immunotherapy: State of the Art and Future Directions.
Gastro Hep Adv. 2023;2(8):1103-1119. doi: 10.1016/j.gastha.2023.09.007. Epub 2023 Sep 19.
8
The future landscape of large language models in medicine.
Commun Med (Lond). 2023 Oct 10;3(1):141. doi: 10.1038/s43856-023-00370-1.
10
Large language models in medicine.
Nat Med. 2023 Aug;29(8):1930-1940. doi: 10.1038/s41591-023-02448-8. Epub 2023 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验