Andreo-Lopez Juana, Nuñez-Diaz Cristina, Do Huynh Kelly, Nguyen Marie Minh Thu, Da Cunha Celia, Cantero-Molina Francisco J, Campos-Moreno Cynthia, Zimbone Stefania, Bellia Francesco, Giuffrida Maria Laura, Trujillo-Estrada Laura, Garcia-Leon Juan Antonio, Bettinetti-Luque Miriam, Gamez Nazaret, Valdes Catalina, Morales Rodrigo, Forner Stefania, Martini Alessandra C, Gutierrez Antonia, LaFerla Frank M, Baglietto-Vargas David
Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.
CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
Aging Cell. 2025 Aug;24(8):e70094. doi: 10.1111/acel.70094. Epub 2025 May 13.
Alzheimer's disease (AD) is a complex neurodegenerative proteinopathy in which Aβ and tau misfold and aggregate into entities that structurally unsettle native proteins, mimicking a prion-like or "seeding" process. These Aβ and tau "seeds" can arrange in different conformations or strains that might display distinct pathogenic properties. Furthermore, recent evidence suggests that microglia play a key role in the amyloidogenic event and can modulate the propagation and aggregation processes. Here, we employed histological and molecular approaches to determine whether seeds from human AD brains compared to those from transgenic mice (3xTg-AD) are more prone to induce Aβ and tau aggregates in vivo, as well as potential differences in the microglial response to the plaque pathology. Brain homogenates were injected into the hippocampus of 3xTg-AD mice and hAβ-KI mice and examined at 18-20 months of age. The seeds from the human AD brain induced more aggressive amyloid pathology compared to seeds from aged 3xTg-AD mice. However, the AD seeds from aged transgenic mice triggered more tau pathology. Interestingly, such mice seeds impaired microglial clustering around plaques, leading to more severe neuritic pathology. Furthermore, the human AD seeds injected into the hippocampus of hAβ-KI mice were not able to induce plaque formation. These results suggest that multiple variables such as the AD seed, recipient model, and time are critical factors that can modulate the amyloid pathology onset and progression. Thus, more profound understanding of these factors will provide key insight into how amyloid and tau pathology progresses in AD.
阿尔茨海默病(AD)是一种复杂的神经退行性蛋白病,其中β淀粉样蛋白(Aβ)和tau蛋白发生错误折叠并聚集成破坏天然蛋白质结构的实体,类似于朊病毒样或“种子”过程。这些Aβ和tau“种子”可以以不同的构象或毒株形式排列,可能表现出不同的致病特性。此外,最近的证据表明,小胶质细胞在淀粉样蛋白生成事件中起关键作用,并可调节传播和聚集过程。在这里,我们采用组织学和分子方法来确定与转基因小鼠(3xTg-AD)相比,来自人类AD大脑的种子是否更易于在体内诱导Aβ和tau聚集,以及小胶质细胞对斑块病理反应的潜在差异。将脑匀浆注射到3xTg-AD小鼠和人Aβ基因敲入(hAβ-KI)小鼠的海马体中,并在18 - 20月龄时进行检查。与来自老年3xTg-AD小鼠的种子相比,来自人类AD大脑的种子诱导出更具侵袭性的淀粉样病理。然而,来自老年转基因小鼠的AD种子引发了更多的tau病理。有趣的是,这种小鼠种子损害了斑块周围小胶质细胞的聚集,导致更严重的神经炎性病理。此外,注射到hAβ-KI小鼠海马体中的人类AD种子无法诱导斑块形成。这些结果表明,诸如AD种子、受体模型和时间等多个变量是可以调节淀粉样病理发生和进展的关键因素。因此,对这些因素更深入的理解将为了解AD中淀粉样蛋白和tau病理如何进展提供关键见解。