Suppr超能文献

透明细胞肾细胞癌中的代谢重编程与免疫微环境分析:对预后、靶向治疗及耐药性的意义

Metabolic reprogramming and immune microenvironment profiling in clear cell renal cell carcinoma: implications for prognosis, targeted therapy, and drug resistance.

作者信息

Zheng Xiao, Liu Yongqiang, Yang Zixin, Tian Yanhua

机构信息

Department of Nephrology, Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of China Three Gorges University, Yichang, 443002, Hubei, China.

Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

出版信息

Discov Oncol. 2025 May 21;16(1):850. doi: 10.1007/s12672-025-02401-w.

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most prevalent form of kidney cancer, distinguished by intricate interactions between metabolic reprogramming, immune microenvironment dynamics, and genetic mutations. In this detailed investigation, we analyzed the ccRCC cohort from The Cancer Genome Atlas (TCGA) alongside 81 metabolic signaling pathways from the KEGG database. By utilizing Gene Set Variation Analysis (GSVA), we performed hierarchical clustering of patients based on their metabolic pathway activity profiles, identifying three distinct clusters with notable differences in pathway activity and survival outcomes. Cluster 1 displayed high metabolic activity and more favorable survival outcomes, while Cluster 3 was characterized by low metabolic activity and poorer prognosis. Clinical comparisons revealed significant disparities in gender, histological stage, and survival status, with Cluster 3 exhibiting a higher proportion of patients at advanced stages and those who had passed away. Genetically, Cluster 1 showed the highest mutation burden, with prominent mutations in genes such as VHL and PBRM1. Biological process analysis indicated that pathways like organic carboxylic acid metabolism and ATP synthesis were upregulated in Cluster 1 but suppressed in Cluster 3. Machine learning models (GBM, CoxBoost, and LASSO regression) enabled the identification of four pivotal genes-BCAT1, IL4I1, ACADM, and ACADSB-which were subsequently used to construct a multifactorial Cox regression model. This model successfully stratified patients into high- and low-risk groups, correlating with marked differences in immune activities. The high-risk group showed elevated expression of chemokines, TNF, and HLA molecules. Drug sensitivity analysis suggested that AKT inhibitor III was more effective in the low-risk cohort, while Bortezomib might be more beneficial for high-risk patients. Additionally, a clinical prediction model integrating risk scores and clinical factors demonstrated strong predictive power for patient survival. Methylation profiling of the core genes via the UALCAN platform revealed distinct epigenetic signatures in ccRCC, providing deeper insight into the disease's molecular mechanisms. This study contributes to a more comprehensive understanding of ccRCC and proposes valuable directions for personalized treatment strategies and enhanced patient management.

摘要

透明细胞肾细胞癌(ccRCC)是最常见的肾癌形式,其特点是代谢重编程、免疫微环境动态变化和基因突变之间存在复杂的相互作用。在这项详细研究中,我们分析了来自癌症基因组图谱(TCGA)的ccRCC队列以及KEGG数据库中的81条代谢信号通路。通过使用基因集变异分析(GSVA),我们根据患者的代谢途径活性谱进行分层聚类,识别出三个不同的簇,它们在途径活性和生存结果方面存在显著差异。簇1表现出高代谢活性和更有利的生存结果,而簇3的特征是低代谢活性和较差的预后。临床比较显示,在性别、组织学分期和生存状态方面存在显著差异,簇3中晚期患者和死亡患者的比例更高。在基因方面,簇1显示出最高的突变负担,VHL和PBRM1等基因存在显著突变。生物学过程分析表明,有机羧酸代谢和ATP合成等途径在簇1中上调,但在簇3中受到抑制。机器学习模型(GBM、CoxBoost和LASSO回归)能够识别四个关键基因——BCAT1、IL4I1、ACADM和ACADSB,随后用于构建多因素Cox回归模型。该模型成功地将患者分为高风险和低风险组,这与免疫活性的显著差异相关。高风险组中趋化因子、TNF和HLA分子的表达升高。药物敏感性分析表明,AKT抑制剂III在低风险队列中更有效,而硼替佐米可能对高风险患者更有益。此外,一个整合风险评分和临床因素的临床预测模型对患者生存具有强大的预测能力。通过UALCAN平台对核心基因进行甲基化分析,揭示了ccRCC中独特的表观遗传特征,为该疾病的分子机制提供了更深入的见解。这项研究有助于更全面地了解ccRCC,并为个性化治疗策略和加强患者管理提出了有价值的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2c7/12095103/73a9fc07f4ca/12672_2025_2401_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验