Li Bingjie, Su Jiaji, Lin Runyu, Yau Shing-Tung, Yao Zhigang
Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore.
Yau Mathematical Sciences Center, Tsinghua University, Jingzhai, Beijing 100084, China.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2500001122. doi: 10.1073/pnas.2500001122. Epub 2025 May 28.
NMR-based metabolic biomarkers provide comprehensive insights into human metabolism; however, extracting biologically meaningful patterns from such high-dimensional data remains a significant challenge. In this study, we propose a manifold-fitting-based framework to analyze metabolic heterogeneity within the UK Biobank population, utilizing measurements of 251 NMR biomarkers from 212,853 participants. Initially, our method clusters these biomarkers into seven distinct metabolic categories that reflect the modular organization of human metabolism. Subsequent manifold fitting to each category unveils underlying low-dimensional structures, elucidating fundamental variations from basic energy metabolism to hormone-mediated regulation. Importantly, three of these manifolds clearly stratify the population, identifying subgroups with distinct metabolic profiles and associated disease risks. These subgroups exhibit consistent links with specific diseases, including severe metabolic dysregulation and its complications, as well as cardiovascular and autoimmune conditions, highlighting the intricate relationship between metabolic states and disease susceptibility. Supported by strong correlations with demographic factors, clinical measurements, and lifestyle variables, these findings validate the biological relevance of the identified manifolds. By utilizing a geometrically informed approach to dissect metabolic heterogeneity, our framework enhances the accuracy of population stratification and deepens our understanding of metabolic health, potentially guiding personalized interventions and preventive healthcare strategies.
基于核磁共振的代谢生物标志物为深入了解人类新陈代谢提供了全面的视角;然而,从如此高维的数据中提取具有生物学意义的模式仍然是一项重大挑战。在本研究中,我们提出了一个基于流形拟合的框架,以分析英国生物银行人群中的代谢异质性,该框架利用了来自212,853名参与者的251种核磁共振生物标志物的测量数据。首先,我们的方法将这些生物标志物聚类为七个不同的代谢类别,这些类别反映了人类新陈代谢的模块化组织。随后对每个类别进行流形拟合,揭示了潜在的低维结构,阐明了从基本能量代谢到激素介导调节的基本变化。重要的是,其中三个流形清晰地对人群进行了分层,识别出具有不同代谢特征和相关疾病风险的亚组。这些亚组与特定疾病表现出一致的关联,包括严重的代谢失调及其并发症,以及心血管和自身免疫性疾病,突出了代谢状态与疾病易感性之间的复杂关系。这些发现得到了与人口统计学因素、临床测量和生活方式变量的强相关性的支持,验证了所识别流形的生物学相关性。通过采用几何信息方法剖析代谢异质性,我们的框架提高了人群分层的准确性,加深了我们对代谢健康的理解,有可能指导个性化干预和预防性医疗保健策略。