Lu Chun-Xian, Long Zhen-Xue, Lu Ji-Li, Huang Cheng-Kua, Nakamura Tomoki, Tao Shou-Wen, Hua Shu-Liang, Fang Da-Lang
Department of Spine and Osteopathy, Baise People's Hospital, Baise, China.
Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan.
Transl Pediatr. 2025 May 30;14(5):1003-1018. doi: 10.21037/tp-2025-262. Epub 2025 May 27.
Osteosarcoma (OS), the most common pediatric bone tumor, faces challenges with frequent relapse despite treatment advances. Identifying early diagnostic biomarkers and therapeutic targets is critical. The purpose of this study was to investigate the novel biomarkers for OS, and we also aimed to explore whether these biomarkers could potentially serve as the therapy targets.
Integrated analysis combined three Gene Expression Omnibus (GEO) datasets (GSE42352, GSE126209, GSE12865) and TARGET-OS clinical-transcriptomic data (n=88). Immune-related genes from ImmPort (1,793 genes) were analyzed alongside differentially expressed genes (DEGs) identified via sva batch correction. Functional enrichment used clusterProfiler, while machine learning [eXtreme Gradient Boosting (XGB), random forest (RF), generalized linear model (GLM), support vector machine (SVM)] models were built with caret, xgboost, and kernlab. Prognostic genes were screened via univariate Cox regression (P<0.05). Key genes intersecting SVM and Cox results were validated via package for receiver operating characteristic (pROC), survival analysis, competing endogenous RNA (ceRNA) network (Cytoscape), immune infiltration (CIBERSORT), drug sensitivity (GDSC), and quantitative polymerase chain reaction (qPCR).
Differential analysis identified 1,370 DEGs (748 upregulated, 622 downregulated), intersecting with immune-related genes to yield 174 OS-linked immune-DEGs. Enrichment highlighted cytokine-PI3K-Akt pathways. Machine learning prioritized 10 genes, with showing highest diagnostic accuracy [area under the curve (AUC) =0.903, 95% confidence interval (CI): 0.769-0.993]. Univariate Cox linked , , , , , , to prognosis (P<0.05). Intersection identified MASP1 as the core gene, significantly downregulated in OS tissue. Survival analysis across GEO/TARGET confirmed higher expression correlated with better outcomes (P<0.05). inversely correlated with resting CD4+ T-cell infiltration (r=-0.14, P=0.04), a poor prognostic marker. Drug sensitivity analysis associated with enhanced response to doxorubicin, vinblastine, gemcitabine, and sorafenib. qPCR validated downregulation in OS samples.
is a promising diagnostic biomarker and therapeutic target for OS. These findings could help to improve patient prognosis and the treatment response. Further studies should be conducted explore clinical applications.
骨肉瘤(OS)是最常见的儿童骨肿瘤,尽管治疗取得了进展,但仍面临频繁复发的挑战。识别早期诊断生物标志物和治疗靶点至关重要。本研究的目的是研究骨肉瘤的新型生物标志物,我们还旨在探索这些生物标志物是否有可能作为治疗靶点。
综合分析结合了三个基因表达综合数据库(GEO)数据集(GSE42352、GSE126209、GSE12865)和TARGET-OS临床转录组数据(n = 88)。对来自ImmPort的免疫相关基因(1793个基因)以及通过sva批次校正鉴定的差异表达基因(DEG)进行了分析。功能富集使用clusterProfiler,而机器学习[极端梯度提升(XGB)、随机森林(RF)、广义线性模型(GLM)、支持向量机(SVM)]模型则使用caret、xgboost和kernlab构建。通过单变量Cox回归筛选预后基因(P<0.05)。通过用于受试者工作特征的软件包(pROC)、生存分析、竞争性内源性RNA(ceRNA)网络(Cytoscape)、免疫浸润(CIBERSORT)、药物敏感性(GDSC)和定量聚合酶链反应(qPCR)验证了与SVM和Cox结果相交的关键基因。
差异分析鉴定出1370个DEG(748个上调,622个下调),与免疫相关基因相交产生174个与骨肉瘤相关的免疫DEG。富集突出了细胞因子-PI3K-Akt途径。机器学习将10个基因列为优先,其中显示出最高的诊断准确性[曲线下面积(AUC)=0.903,95%置信区间(CI):0.769-0.993]。单变量Cox将、、、、、、与预后相关联(P<0.05)。相交鉴定出MASP1为核心基因,在骨肉瘤组织中显著下调。跨GEO/TARGET的生存分析证实,较高的表达与更好的预后相关(P<0.05)。与静息CD4+T细胞浸润呈负相关(r=-0.14,P = 0.04),这是一个不良预后标志物。药物敏感性分析表明与对阿霉素、长春碱、吉西他滨和索拉非尼的反应增强有关。qPCR验证了骨肉瘤样本中的下调。
是骨肉瘤有前景的诊断生物标志物和治疗靶点。这些发现有助于改善患者预后和治疗反应。应进行进一步研究以探索的临床应用。