Pial Turash Haque, Li Sixuan, Lin Jinghan, Wang Tza-Huei, Mao Hai-Quan, Curk Tine
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore.
Department of Mechanical Engineering, Johns Hopkins University, Baltimore.
bioRxiv. 2025 Jun 11:2025.06.11.659145. doi: 10.1101/2025.06.11.659145.
Lipid nanoparticles (LNPs), a leading non-viral nucleic acid delivery platform, are assembled with a heterogeneous payload distribution. This uneven therapeutic payload distribution can be critical parameters influencing delivery efficiency, therapeutic efficacy, and inflammatory side effects, limitations that become especially acute in prolonged gene therapies. Here, we integrate coarse-grained molecular dynamics and kinetic Monte Carlo simulations with single-particle characterization via cylindrical illumination confocal spectroscopy (CICS) and machine learning analysis to understand, step-by-step, the formation of RNA-loaded LNPs and the origins of the payload variability. We find that the balance between RNA diffusion kinetics and lipid self-assembly dynamics is the dominant driver of payload heterogeneity. Leveraging this mechanistic insight, we show that (i) finely controlled turbulent mixing minimizes payload variance and increases the uniformity of RNA distribution without altering LNP size, and (ii) systematic adjustment of salt concentration and PEG-lipid content tunes RNA loading in a volume-dependent manner. Together, these results elucidate the self-assembly landscape of LNPs and provide actionable design principles for crafting more uniform, potent, and safer LNP-based nucleic acid therapies.
脂质纳米颗粒(LNPs)是一种领先的非病毒核酸递送平台,其组装时的有效载荷分布不均一。这种不均匀的治疗性有效载荷分布可能是影响递送效率、治疗效果和炎症副作用的关键参数,而这些限制在长期基因治疗中变得尤为突出。在这里,我们将粗粒度分子动力学和动力学蒙特卡罗模拟与通过柱面照明共聚焦光谱(CICS)进行的单颗粒表征以及机器学习分析相结合,逐步了解负载RNA的LNPs的形成过程以及有效载荷变异性的来源。我们发现RNA扩散动力学和脂质自组装动力学之间的平衡是有效载荷异质性的主要驱动因素。利用这一机理见解,我们表明:(i)精细控制的湍流混合可使有效载荷差异最小化,并增加RNA分布的均匀性,而不会改变LNP的大小;(ii)系统调整盐浓度和聚乙二醇脂质含量可按体积依赖性方式调节RNA负载量。总之,这些结果阐明了LNPs的自组装情况,并为设计更均匀、有效和安全的基于LNP的核酸疗法提供了可行的设计原则。