Suppr超能文献

一种用于胃癌预后预测和免疫治疗反应评估的相分离相关基因特征及靶向天然化合物发现

A phase separation-related gene signature for prognosis prediction and immunotherapy response evaluation in gastric cancer with targeted natural compound discovery.

作者信息

Jia Yanjuan, Ma Yuanyuan, Li Zhenhao, Zhang Wenze, Lu Rukun, Wang Wanxia, Wei Chaojun, Wei Chunyan, Li Yonghong, Gao Xiaoling, Qu Tao

机构信息

NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Donggang West Road 204, Chengguan District, Lanzhou, 730000, Gansu, China.

The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.

出版信息

Discov Oncol. 2025 Jul 23;16(1):1393. doi: 10.1007/s12672-025-03129-3.

Abstract

BACKGROUND

Aberrant phase separation (PS) has emerged as a pivotal pathogenic mechanism in cancer development. However, its prognostic significance and influence on the tumor immune microenvironment in gastric cancer (GC) remain largely unexplored. This study aimed to develop a PS-related risk model for predicting clinical outcomes and immunotherapy response, and to identify potential natural small-molecule compounds targeting proteins within this PS-related network.

METHODS

We integrated transcriptomic data from the TCGA-STAD and GSE62254 datasets with four PS-related databases (including DrLLPS, PhaSepDB, PhaSePro, and LLPSDB) to identify candidate signature genes. The prognostic model was developed using least absolute shrinkage and selection operator (LASSO) regression and validated in both cohorts. Immune checkpoint inhibitor (ICI) response between PS-related high- and low-risk groups was evaluated using TIDE algorithm scores. Potential therapeutic agents targeting signature genes were screened via Connectivity Map and HERB database analyses, followed by molecular docking validation.

RESULTS

By Integrating analysis of the differential expression dataset from TCGA-STAD (n = 407, 375 tumor/32 normal) with prognosis-related dataset and PS-related dataset, we identified 78 candidate genes and developed a robust 21-gene risk prediction model. The model effectively stratified GC patients into high-risk and low-risk subgroups, with consistent performance in the independent GSE62254 validation cohort (n = 300, tumor). Compared to low-risk patients, high-risk patients exhibited poorer survival, a more immunosuppressive microenvironment, and a reduced response to immunotherapy. Moreover, computational screening identified 18 potential therapeutic natural compounds, 13 of which showed high-affinity binding to signature genes (docking scores > 6.0).

CONCLUSIONS

Our study developed a novel PS-related risk model that predicts GC outcomes, characterizes tumor immune microenvironment, evaluates immunotherapy response, and identifies targeting small molecules. These findings advance the understanding of PS regulation in GC and provide a framework for personalized therapy.

摘要

背景

异常相分离(PS)已成为癌症发展中的关键致病机制。然而,其在胃癌(GC)中的预后意义及其对肿瘤免疫微环境的影响在很大程度上仍未得到探索。本研究旨在建立一个与PS相关的风险模型,用于预测临床结局和免疫治疗反应,并识别靶向该PS相关网络中蛋白质的潜在天然小分子化合物。

方法

我们将来自TCGA-STAD和GSE62254数据集的转录组数据与四个与PS相关的数据库(包括DrLLPS、PhaSepDB、PhaSePro和LLPSDB)进行整合,以识别候选特征基因。使用最小绝对收缩和选择算子(LASSO)回归开发预后模型,并在两个队列中进行验证。使用TIDE算法评分评估PS相关高风险和低风险组之间的免疫检查点抑制剂(ICI)反应。通过连通性图谱和HERB数据库分析筛选靶向特征基因的潜在治疗药物,随后进行分子对接验证。

结果

通过对来自TCGA-STAD(n = 407,375例肿瘤/32例正常)的差异表达数据集与预后相关数据集和PS相关数据集进行综合分析,我们识别出78个候选基因,并开发了一个强大的21基因风险预测模型。该模型有效地将GC患者分为高风险和低风险亚组,在独立的GSE62254验证队列(n = 300,肿瘤)中具有一致的表现。与低风险患者相比,高风险患者的生存率较低,免疫微环境更具抑制性,对免疫治疗的反应降低。此外,计算筛选确定了18种潜在的治疗性天然化合物,其中13种与特征基因显示出高亲和力结合(对接分数>6.0)。

结论

我们的研究开发了一种新型的与PS相关的风险模型,该模型可预测GC结局,表征肿瘤免疫微环境,评估免疫治疗反应,并识别靶向小分子。这些发现推进了对GC中PS调节的理解,并为个性化治疗提供了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0795/12287496/8932fc545af4/12672_2025_3129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验