Suppr超能文献

嗜杀酵母的基因组和分泌组分析揭示了生物质分解的关键木聚糖酶。

Genomic and secretomic analyses of Blastobotrys yeasts reveal key xylanases for biomass decomposition.

作者信息

Ravn Jonas, Ristinmaa Amanda S, Mazurkewich Scott, Dias Guilherme B, Larsbrink Johan, Geijer Cecilia

机构信息

Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden.

Division of Bioeconomy, Sweden, Department of Food Research and Innovation, RISE Research Institutes of Sweden, Frans Perssons Väg 6, SE-412 76, Gothenburg, Sweden.

出版信息

Appl Microbiol Biotechnol. 2025 Aug 1;109(1):175. doi: 10.1007/s00253-025-13556-5.

Abstract

Xylanolytic enzyme systems in ascomycetous yeasts remain underexplored, despite the presence of yeasts in various xylan-rich ecological niches. In this study, we investigated the secreted xylanolytic machineries of three Blastobotrys species-B. mokoenaii, B. illinoisensis, and B. malaysiensis-by integrating genome annotation, bioinformatics, and secretome analyses of cultures grown on beechwood glucuronoxylan. Our findings demonstrate that these yeasts effectively hydrolyze xylan through the secretion of xylanases from the glycoside hydrolase (GH) family 11, which play a central role in cleaving the xylan backbone. Additionally, the yeasts produce a diverse array of other CAZymes, including members of GH families 3, 5, and 67, with putative roles in xylan degradation. We also report on the heterologous expression and functional characterization of the GH30_7 xylanase BmXyn30A from B. mokoenaii, which exhibits both glucuronoxylanase and xylobiohydrolase activities. We demonstrate additive effects between GH family 30 BmXyn30A and GH family 11 BmXyn11A during the hydrolysis of beechwood glucuronoxylan, where the enzymes exhibit complementary roles that enhance the deconstruction of this complex hemicellulose substrate. These findings broaden our understanding of the xylanolytic systems in yeasts and underscore the potential of Blastobotrys species as cell factories and natural xylanase producers. The enzymes they produce hold promise for biorefining applications, enabling efficient utilization of renewable xylan-rich plant biomass resources. KEY POINTS: • Extracellular GH11 xylanases dominate glucuronoxylan degradation in Blastobotrys yeasts. • Yeast GH30_7 enzyme shows multifaceted activity, supporting complex xylan breakdown. • Blastobotrys yeasts show promise as cell factories for industrial biotechnology applications.

摘要

尽管子囊菌酵母存在于各种富含木聚糖的生态位中,但对其木聚糖分解酶系统的研究仍不充分。在本研究中,我们通过整合基因组注释、生物信息学以及对在山毛榉木葡糖醛酸木聚糖上生长的培养物进行分泌蛋白组分析,研究了三种Blastobotrys属酵母——莫氏Blastobotrys、伊利诺伊Blastobotrys和马来西亚Blastobotrys——的分泌型木聚糖分解机制。我们的研究结果表明,这些酵母通过分泌糖苷水解酶(GH)家族11的木聚糖酶有效地水解木聚糖,这些木聚糖酶在裂解木聚糖主链中起核心作用。此外,这些酵母还产生了多种其他碳水化合物活性酶,包括GH家族3、5和67的成员,它们在木聚糖降解中可能发挥作用。我们还报道了来自莫氏Blastobotrys的GH30_7木聚糖酶BmXyn30A的异源表达和功能表征,该酶具有葡糖醛酸木聚糖酶和木二糖水解酶活性。我们证明了在山毛榉木葡糖醛酸木聚糖水解过程中,GH家族30的BmXyn30A和GH家族11的BmXyn11A之间存在加性效应,其中这些酶发挥互补作用,增强了对这种复杂半纤维素底物的解构。这些发现拓宽了我们对酵母木聚糖分解系统的理解,并强调了Blastobotrys属酵母作为细胞工厂和天然木聚糖酶生产者的潜力。它们产生的酶在生物精炼应用中具有前景,能够有效利用富含木聚糖的可再生植物生物质资源。关键点:• 细胞外GH11木聚糖酶在Blastobotrys酵母的葡糖醛酸木聚糖降解中占主导地位。• 酵母GH30_7酶具有多方面活性,支持复杂木聚糖的分解。• Blastobotrys酵母有望成为工业生物技术应用的细胞工厂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ee/12316802/e4bafabe8729/253_2025_13556_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验