Suppr超能文献

呼吸节律产生与感觉运动整合中的离子通道

Ion channels in respiratory rhythm generation and sensorimotor integration.

作者信息

da Silva Junior Carlos Aparecido, Picardo Maria Cristina D, Del Negro Christopher A

机构信息

Department of Applied Science, School of Computing, Data Sciences & Physics, William & Mary, Williamsburg, VA 23185, USA; Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 2712, USA.

Department of Applied Science, School of Computing, Data Sciences & Physics, William & Mary, Williamsburg, VA 23185, USA.

出版信息

Neuron. 2025 Jul 21. doi: 10.1016/j.neuron.2025.06.011.

Abstract

Breathing movements depend on rhythmic neural activity in brainstem nuclei whose constituent neurons are well characterized. Knowing the sites and cells underlying the behavior enables us to identify the roles of individual ion channels. They accomplish three tasks: regulate excitability via the balance of intrinsic currents that govern baseline membrane potential and tonic firing; generate bursts to drive the motor output pattern; and transduce blood-gas levels, lung volume, and air qualities. Here, we explain how sodium and mixed cation channels (sodium leak channel non-selective [NALCN], Na1.6, and transient receptor potential [TRP] melastatin 4 [TRPM4]) both regulate excitability and generate bursts and how potassium (predominantly two-pore domain acid-sensitive potassium [TASK]-2) and mixed cation (PIEZO and TRP) channels encode sensory feedback to central control circuits. These mechanisms underlie normal breathing and sigh breaths. Breathing is a mammalian behavior in which rhythmogenesis and sensorimotor integration can be understood at multiple levels of analysis from microcircuits and cells to ion channels and genes.

摘要

呼吸运动依赖于脑干核团中的节律性神经活动,其组成神经元已得到充分表征。了解该行为背后的位点和细胞,有助于我们确定单个离子通道的作用。它们完成三项任务:通过控制基线膜电位和紧张性放电的内在电流平衡来调节兴奋性;产生爆发式放电以驱动运动输出模式;以及传导血气水平、肺容积和空气质量信息。在此,我们解释钠通道和混合阳离子通道(非选择性钠漏通道[NALCN]、Na1.6和瞬时受体电位[TRP]褪黑素4[TRPM4])如何调节兴奋性并产生爆发式放电,以及钾通道(主要是双孔结构域酸敏感钾通道[TASK]-2)和混合阳离子通道(压电通道和TRP通道)如何将感觉反馈编码至中枢控制回路。这些机制构成了正常呼吸和叹息呼吸的基础。呼吸是一种哺乳动物行为,在从微电路和细胞到离子通道和基因的多个分析层面上,都可以理解其节律产生和感觉运动整合过程。

引用本文的文献

本文引用的文献

1
3
Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia.
Nat Commun. 2024 May 25;15(1):4475. doi: 10.1038/s41467-024-48773-5.
4
Interdependence of cellular and network properties in respiratory rhythm generation.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2318757121. doi: 10.1073/pnas.2318757121. Epub 2024 May 1.
5
C-type inactivation and proton modulation mechanisms of the TASK3 channel.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320345121. doi: 10.1073/pnas.2320345121. Epub 2024 Apr 17.
6
Kir4.1 channels contribute to astrocyte CO/H-sensitivity and the drive to breathe.
Commun Biol. 2024 Mar 28;7(1):373. doi: 10.1038/s42003-024-06065-0.
7
A vagal reflex evoked by airway closure.
Nature. 2024 Mar;627(8005):830-838. doi: 10.1038/s41586-024-07144-2. Epub 2024 Mar 6.
9
Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms.
Front Mol Neurosci. 2024 Jan 11;16:1334370. doi: 10.3389/fnmol.2023.1334370. eCollection 2023.
10
Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups.
Front Physiol. 2023 Sep 1;14:1241662. doi: 10.3389/fphys.2023.1241662. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验