Korsa Hailemariam Assefa, Bekele Endrias Adane
Materials Science and Engineering, Jimma, Jimma University Institute of Technology, Jimma, Oromia, Ethiopia 378.
ACS Omega. 2025 Jul 25;10(30):33558-33569. doi: 10.1021/acsomega.5c04126. eCollection 2025 Aug 5.
Co-(II)-ion-polluted water has become a significant global environmental issue recently. This study synthesized a CuVO/g-CN nanocomposite through a hydrothermal method. The nanocomposite was analyzed using various techniques, including X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), and the Brunauer-Emmet-Teller (BET) method. RSM-CCD was utilized to model and optimize the adsorption of Co-(II) in aqueous solutions, subsequently examining the isotherm and kinetic models. The maximum adsorption (905.22) was achieved at an initial Co-(II) concentration of 65.144 mg/L, a solution pH of 6.02, an adsorbent dosage of 1.058 g/L, and a contact time of 47.958 min. The removal efficiency was obtained to be 96.356%. The kinetic adsorption results were accurately fitted using the pseudo-second-order model, and the equilibrium data were well described using the Freundlich isotherm behavior. The adsorbent exhibited excellent reusability, maintaining high recovery efficiencies of 97.86% in KOH and 89.7% in HNO during the first cycle. The adsorption of Co-(II) is governed by electrostatic attraction, hydrogen bonding, ion exchange, and surface complexation with a functional group on the nanocomposite surface. This study highlights the potential of the CuVO/g-CN nanocomposite in addressing water pollution challenges.
近年来,钴(II)离子污染的水已成为一个重大的全球环境问题。本研究通过水热法合成了CuVO/g-CN纳米复合材料。使用各种技术对该纳米复合材料进行了分析,包括X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和布鲁诺尔-埃米特-泰勒(BET)法。利用响应曲面法-中心复合设计(RSM-CCD)对水溶液中Co(II)的吸附进行建模和优化,随后研究等温线和动力学模型。在初始Co(II)浓度为65.144 mg/L、溶液pH值为6.02、吸附剂用量为1.058 g/L和接触时间为47.958 min的条件下,实现了最大吸附量(905.22)。去除效率达到96.356%。动力学吸附结果用准二级模型准确拟合,平衡数据用弗伦德利希等温线行为很好地描述。该吸附剂表现出优异的可重复使用性,在第一个循环中,在KOH中的回收率高达97.86%,在HNO中的回收率高达89.7%。Co(II)的吸附受静电吸引、氢键、离子交换以及与纳米复合材料表面官能团的表面络合作用控制。本研究突出了CuVO/g-CN纳米复合材料在应对水污染挑战方面的潜力。