Suppr超能文献

酵母液泡对高渗胁迫的早期反应。

Early responses to hyperosmotic stress at the yeast vacuole.

作者信息

Saravanan Kalaivani, Kane Patricia M

机构信息

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210.

出版信息

bioRxiv. 2025 Aug 13:2025.08.11.669746. doi: 10.1101/2025.08.11.669746.

Abstract

In yeast, early adaptation to hyperosmotic stress involves organelle-based mechanisms, including synthesis of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P) at the vacuole. This low-level signaling lipid drives vacuolar fragmentation and activates the V-ATPase proton pump, which acidifies the vacuole and drives salt sequestration. The vacuole-resident V-ATPase subunit Vph1 interacts with PI(3,5)P via its N-terminal domain (Vph1NT), directly linking lipid signaling to proton pump regulation. Under NaCl stress, PI(3,5)P rapidly accumulates, triggering increased V-ATPase activity and vacuolar remodeling; these responses are impaired by deficient PI(3,5)P synthesis. A Vph1NT-GFP fusion protein with no membrane domain is cytosolic without salt, but upon NaCl addition, rapidly relocalizes to a region adjacent to the vacuole in a PI(3,5)P-dependent manner. The intensity and duration of this response depend on salt concentration. Vph1NT-GFP returns to the same location upon repeated salt challenge, suggesting that PI(3,5)P synthesis occurs at a localized domain/contact site. Disrupting PI(3,5)P2 signaling, V-ATPase activity, or the high osmolarity glycerol pathway, which coordinates long-term transcriptional changes, compromises cellular adaptation to salt, underscoring the integration of lipid signaling and transcriptional regulation in hyperosmotic stress. These findings suggest activation of the V-ATPase, and possibly other targets, by PI(3,5)P synthesis provides immediate protection that primes cells for longer-term survival strategies.

摘要

在酵母中,对高渗胁迫的早期适应涉及基于细胞器的机制,包括在液泡处合成磷脂酰肌醇3,5-二磷酸(PI(3,5)P)。这种低水平的信号脂质驱动液泡碎片化并激活V-ATP酶质子泵,使液泡酸化并驱动盐分隔离。液泡驻留的V-ATP酶亚基Vph1通过其N端结构域(Vph1NT)与PI(3,5)P相互作用,直接将脂质信号传导与质子泵调节联系起来。在NaCl胁迫下,PI(3,5)P迅速积累,触发V-ATP酶活性增加和液泡重塑;PI(3,5)P合成缺陷会损害这些反应。没有膜结构域的Vph1NT-GFP融合蛋白在无盐时位于细胞质中,但加入NaCl后,会以PI(3,5)P依赖的方式迅速重新定位到液泡附近的区域。这种反应的强度和持续时间取决于盐浓度。在反复盐胁迫下,Vph1NT-GFP会回到相同位置,表明PI(3,5)P合成发生在局部结构域/接触位点。破坏PI(3,5)P2信号传导、V-ATP酶活性或协调长期转录变化的高渗甘油途径,会损害细胞对盐的适应性,强调了脂质信号传导和转录调节在高渗胁迫中的整合。这些发现表明,PI(3,5)P合成对V-ATP酶以及可能的其他靶点的激活提供了即时保护,为细胞的长期生存策略做好准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/12363888/257a28ee43e7/nihpp-2025.08.11.669746v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验