Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA.
Infect Immun. 2011 Dec;79(12):4828-38. doi: 10.1128/IAI.05574-11. Epub 2011 Sep 26.
Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression.
结核分枝杆菌是一种高度成功的人类病原体,它通过干扰巨噬细胞功能来逃避宿主先天免疫。除了避免巨噬细胞的杀菌活性外,结核分枝杆菌还会触发巨噬细胞中促炎细胞因子和趋化因子的分泌。临床结核分枝杆菌分离株诱导的促炎细胞因子水平被认为在决定结核病的进展和严重程度方面起着重要作用,但结核分枝杆菌调节炎症反应程度的机制尚不清楚。在这里,我们表明结核分枝杆菌通过细胞包膜相关丝氨酸水解酶 Hip1(对发病机制重要的水解酶 1)来限制巨噬细胞的强烈激活并抑制促炎反应。通过对感染野生型或 hip1 突变菌的巨噬细胞进行转录谱分析,我们发现 hip1 突变体诱导了更早和更高水平的几种促炎细胞因子和趋化因子。我们表明,Toll 样受体 2(TLR2)和 MyD88 依赖性信号通路的激活增加介导了 hip1 突变体诱导的细胞因子分泌的增强。因此,Hip1 通过限制 TLR2 依赖性激活来限制促炎细胞因子的起始和幅度。我们还表明,Hip1 抑制了 TLR2 非依赖性炎症小体的激活,并限制了白细胞介素-18(IL-18)的分泌。TLR2 信号的抑制不需要存活的结核分枝杆菌或吞噬作用,但需要 Hip1 的催化活性。我们提出,结核分枝杆菌通过掩盖结核分枝杆菌上的 TLR2 激动剂与巨噬细胞上的 TLR2 之间的细胞表面相互作用来限制促炎反应。这种策略可能使结核分枝杆菌逃避宿主免疫的早期检测,延迟适应性免疫反应的开始,并加速疾病的进展。