Suppr超能文献

计算蛋白质配体结合亲和力的 MMPBSA 方法及误差分析。

Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.

机构信息

Chemical and Materials Physics Graduate Program, Irvine, California, 92697.

Department of Molecular Biology and Biochemistry, Irvine, California, 92697.

出版信息

J Comput Chem. 2016 Oct 15;37(27):2436-46. doi: 10.1002/jcc.24467. Epub 2016 Aug 11.

Abstract

Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) methods have become widely adopted in estimating protein-ligand binding affinities due to their efficiency and high correlation with experiment. Here different computational alternatives were investigated to assess their impact to the agreement of MMPBSA calculations with experiment. Seven receptor families with both high-quality crystal structures and binding affinities were selected. First the performance of nonpolar solvation models was studied and it was found that the modern approach that separately models hydrophobic and dispersion interactions dramatically reduces RMSD's of computed relative binding affinities. The numerical setup of the Poisson-Boltzmann methods was analyzed next. The data shows that the impact of grid spacing to the quality of MMPBSA calculations is small: the numerical error at the grid spacing of 0.5 Å is already small enough to be negligible. The impact of different atomic radius sets and different molecular surface definitions was further analyzed and weak influences were found on the agreement with experiment. The influence of solute dielectric constant was also analyzed: a higher dielectric constant generally improves the overall agreement with experiment, especially for highly charged binding pockets. The data also showed that the converged simulations caused slight reduction in the agreement with experiment. Finally the direction of estimating absolute binding free energies was briefly explored. Upon correction of the binding-induced rearrangement free energy and the binding entropy lost, the errors in absolute binding affinities were also reduced dramatically when the modern nonpolar solvent model was used, although further developments were apparently necessary to further improve the MMPBSA methods. © 2016 Wiley Periodicals, Inc.

摘要

分子力学泊松-玻尔兹曼表面积(MMPBSA)方法由于其效率高且与实验高度相关,已广泛应用于估算蛋白质-配体结合亲和力。在这里,研究了不同的计算方法,以评估它们对 MMPBSA 计算与实验吻合度的影响。选择了具有高质量晶体结构和结合亲和力的七种受体家族。首先研究了非极性溶剂化模型的性能,发现将疏水相互作用和色散相互作用分开建模的现代方法大大降低了计算相对结合亲和力的 RMSD。接下来分析了泊松-玻尔兹曼方法的数值设置。数据表明,网格间距对 MMPBSA 计算质量的影响很小:在 0.5 Å 的网格间距下的数值误差已经小到可以忽略不计。进一步分析了不同原子半径集和不同分子表面定义的影响,发现对与实验的一致性影响很小。还分析了溶剂介电常数的影响:较高的介电常数通常会提高与实验的整体一致性,特别是对于带高电荷的结合口袋。数据还表明,收敛模拟会导致与实验的一致性略有降低。最后,简要探讨了估算绝对结合自由能的方向。在修正结合诱导的重排自由能和结合熵损失后,当使用现代非极性溶剂模型时,绝对结合亲和力的误差也大大降低,尽管显然需要进一步发展以进一步改进 MMPBSA 方法。© 2016 威利父子公司。

相似文献

1
Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
J Comput Chem. 2016 Oct 15;37(27):2436-46. doi: 10.1002/jcc.24467. Epub 2016 Aug 11.
3
Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.
J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.
4
g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.
J Chem Inf Model. 2014 Jul 28;54(7):1951-62. doi: 10.1021/ci500020m. Epub 2014 Jun 19.
5
SAMPL7: Host-guest binding prediction by molecular dynamics and quantum mechanics.
J Comput Aided Mol Des. 2021 Jan;35(1):63-77. doi: 10.1007/s10822-020-00357-3. Epub 2020 Nov 5.
7
Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
J Comput Chem. 2017 May 15;38(13):941-948. doi: 10.1002/jcc.24757. Epub 2017 Feb 16.
8
SAMPL6 host-guest challenge: binding free energies via a multistep approach.
J Comput Aided Mol Des. 2018 Oct;32(10):1097-1115. doi: 10.1007/s10822-018-0159-1. Epub 2018 Sep 17.
9
Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T).
J Comput Aided Mol Des. 2017 Jan;31(1):87-106. doi: 10.1007/s10822-016-9957-5. Epub 2016 Sep 6.
10
A QM/MM study of the binding of RAPTA ligands to cathepsin B.
J Comput Aided Mol Des. 2011 Aug;25(8):729-42. doi: 10.1007/s10822-011-9448-7. Epub 2011 Jun 24.

引用本文的文献

2
Harnessing AlphaFold to reveal hERG channel conformational state secrets.
Elife. 2025 Jul 14;13:RP104901. doi: 10.7554/eLife.104901.
5
Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Typhimurium.
Biochem Biophys Rep. 2025 Jan 8;41:101901. doi: 10.1016/j.bbrep.2024.101901. eCollection 2025 Mar.
6
Structure-based identification of HNF4α agonists: Rosmarinic acid as a promising candidate for NAFLD treatment.
Comput Struct Biotechnol J. 2024 Dec 27;27:171-183. doi: 10.1016/j.csbj.2024.12.014. eCollection 2025.
10
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.
J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10.

本文引用的文献

1
Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
J Chem Theory Comput. 2009 Apr 14;5(4):919-30. doi: 10.1021/ct800445x. Epub 2009 Mar 24.
2
MMPBSA.py: An Efficient Program for End-State Free Energy Calculations.
J Chem Theory Comput. 2012 Sep 11;8(9):3314-21. doi: 10.1021/ct300418h. Epub 2012 Aug 16.
3
pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
Proteins. 2015 Dec;83(12):2186-97. doi: 10.1002/prot.24935. Epub 2015 Oct 16.
4
On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.
J Chem Theory Comput. 2011 Nov 1;7(11):3608-3619. doi: 10.1021/ct200389p.
5
A revised density function for molecular surface definition in continuum solvent models.
J Chem Theory Comput. 2010 Apr 13;6(4):1157-1169. doi: 10.1021/ct900318u.
6
Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.
J Chem Theory Comput. 2010 Jan 12;6(1):203-211. doi: 10.1021/ct900381r.
7
Exploring accurate Poisson-Boltzmann methods for biomolecular simulations.
Comput Theor Chem. 2013 Nov 15;1024:34-44. doi: 10.1016/j.comptc.2013.09.021.
8
Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.
Chem Phys Lett. 2013 Jan 3;555:274-281. doi: 10.1016/j.cplett.2012.10.081. Epub 2012 Nov 7.
9
Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?
Commun Comput Phys. 2013 Jan;13(1):1-12. doi: 10.4208/cicp.270711.140911s. Epub 2012 Jun 12.
10
Reducing grid-dependence in finite-difference Poisson-Boltzmann calculations.
J Chem Theory Comput. 2012 Aug 14;8(8):2741-2751. doi: 10.1021/ct300341d. Epub 2012 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验