Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas.
JAMA Neurol. 2016 Nov 1;73(11):1349-1355. doi: 10.1001/jamaneurol.2016.3388.
Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1.
To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing.
PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9-mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed.
Multiple proof-of-concept studies reveal the feasibility and efficacy of genome-editing-meditated correction of monogenic neuromuscular diseases in cultured cells and animal models.
Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies.
肌肉无力是神经肌肉疾病最常见的症状,可能是由于肌肉功能障碍引起的,也可能是神经元和神经肌肉接头异常间接引起的。迄今为止,人类已经发现了超过 780 种与 417 种不同基因相关的单基因神经肌肉疾病。基因组编辑方法,特别是 CRISPR(成簇规律间隔短回文重复序列)-Cas9(CRISPR 相关蛋白 9)系统,具有治疗许多单基因疾病的临床潜力,包括杜氏肌营养不良症、脊髓性肌萎缩症、肌萎缩性侧索硬化症和 1 型肌强直性营养不良症等神经肌肉疾病。
提供基因组编辑方法概述;总结目前基因组编辑方法在纠正单基因神经肌肉疾病方面的可行性、有效性和安全性的已发表报告;并强调科学和临床机会以及障碍,以通过基因组编辑永久纠正导致单基因神经肌肉疾病的致病突变。
使用以下关键词在 PubMed 和 Google Scholar 上搜索 1989 年 6 月 30 日至 2016 年 6 月 9 日发表的文章:基因组编辑、CRISPR-Cas9、神经肌肉疾病、杜氏肌营养不良症、脊髓性肌萎缩症、肌萎缩性侧索硬化症和 1 型肌强直性营养不良症。还回顾了以下来源:341 篇描述不同方法编辑哺乳动物基因组的文章;330 篇描述 CRISPR-Cas9 介导的细胞培养系(体外)和动物模型(体内)基因组编辑的文章;16 个用于生成单引导 RNA 的网站;4 个用于脱靶效应的网站;和 382 篇描述病毒和非病毒传递系统的文章。还回顾了描述神经肌肉疾病的文章,包括杜氏肌营养不良症、脊髓性肌萎缩症、肌萎缩性侧索硬化症和 1 型肌强直性营养不良症。
多项概念验证研究表明,在培养细胞和动物模型中,基因组编辑介导的单基因神经肌肉疾病的纠正具有可行性和有效性。
基因组编辑是一项快速发展的技术,一旦解决了有效性、传递和安全性问题,就具有巨大的转化潜力。这项技术的临床影响是,基因组编辑可以永久纠正致病突变,并规避传统基因和细胞治疗的障碍。