Suppr超能文献

单基因神经肌肉疾病的基因组编辑:系统评价。

Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.

机构信息

Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas.

出版信息

JAMA Neurol. 2016 Nov 1;73(11):1349-1355. doi: 10.1001/jamaneurol.2016.3388.

Abstract

IMPORTANCE

Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1.

OBJECTIVES

To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing.

EVIDENCE REVIEW

PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9-mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed.

FINDINGS

Multiple proof-of-concept studies reveal the feasibility and efficacy of genome-editing-meditated correction of monogenic neuromuscular diseases in cultured cells and animal models.

CONCLUSIONS AND RELEVANCE

Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies.

摘要

重要性

肌肉无力是神经肌肉疾病最常见的症状,可能是由于肌肉功能障碍引起的,也可能是神经元和神经肌肉接头异常间接引起的。迄今为止,人类已经发现了超过 780 种与 417 种不同基因相关的单基因神经肌肉疾病。基因组编辑方法,特别是 CRISPR(成簇规律间隔短回文重复序列)-Cas9(CRISPR 相关蛋白 9)系统,具有治疗许多单基因疾病的临床潜力,包括杜氏肌营养不良症、脊髓性肌萎缩症、肌萎缩性侧索硬化症和 1 型肌强直性营养不良症等神经肌肉疾病。

目的

提供基因组编辑方法概述;总结目前基因组编辑方法在纠正单基因神经肌肉疾病方面的可行性、有效性和安全性的已发表报告;并强调科学和临床机会以及障碍,以通过基因组编辑永久纠正导致单基因神经肌肉疾病的致病突变。

证据回顾

使用以下关键词在 PubMed 和 Google Scholar 上搜索 1989 年 6 月 30 日至 2016 年 6 月 9 日发表的文章:基因组编辑、CRISPR-Cas9、神经肌肉疾病、杜氏肌营养不良症、脊髓性肌萎缩症、肌萎缩性侧索硬化症和 1 型肌强直性营养不良症。还回顾了以下来源:341 篇描述不同方法编辑哺乳动物基因组的文章;330 篇描述 CRISPR-Cas9 介导的细胞培养系(体外)和动物模型(体内)基因组编辑的文章;16 个用于生成单引导 RNA 的网站;4 个用于脱靶效应的网站;和 382 篇描述病毒和非病毒传递系统的文章。还回顾了描述神经肌肉疾病的文章,包括杜氏肌营养不良症、脊髓性肌萎缩症、肌萎缩性侧索硬化症和 1 型肌强直性营养不良症。

发现

多项概念验证研究表明,在培养细胞和动物模型中,基因组编辑介导的单基因神经肌肉疾病的纠正具有可行性和有效性。

结论和相关性

基因组编辑是一项快速发展的技术,一旦解决了有效性、传递和安全性问题,就具有巨大的转化潜力。这项技术的临床影响是,基因组编辑可以永久纠正致病突变,并规避传统基因和细胞治疗的障碍。

相似文献

1
Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.
JAMA Neurol. 2016 Nov 1;73(11):1349-1355. doi: 10.1001/jamaneurol.2016.3388.
2
Corticosteroids for the treatment of Duchenne muscular dystrophy.
Cochrane Database Syst Rev. 2016 May 5;2016(5):CD003725. doi: 10.1002/14651858.CD003725.pub4.
3
Glucocorticoid corticosteroids for Duchenne muscular dystrophy.
Cochrane Database Syst Rev. 2008 Jan 23(1):CD003725. doi: 10.1002/14651858.CD003725.pub3.
4
Drug treatment for myotonia.
Cochrane Database Syst Rev. 2025 Apr 8;4(4):CD004762. doi: 10.1002/14651858.CD004762.pub3.
5
Glucocorticoid corticosteroids for Duchenne muscular dystrophy.
Cochrane Database Syst Rev. 2004(2):CD003725. doi: 10.1002/14651858.CD003725.pub2.
7
Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline.
Cochrane Database Syst Rev. 2021 Nov 8;11(11):CD013720. doi: 10.1002/14651858.CD013720.pub2.
8
Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline.
Cochrane Database Syst Rev. 2021 Dec 1;12(12):CD013720. doi: 10.1002/14651858.CD013720.pub3.
10
Rehabilitation interventions for foot drop in neuromuscular disease.
Cochrane Database Syst Rev. 2009 Jul 8(3):CD003908. doi: 10.1002/14651858.CD003908.pub3.

引用本文的文献

1
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
2
Applications of CRISPR-Cas9 in mitigating cellular senescence and age-related disease progression.
Clin Exp Med. 2025 Jul 8;25(1):237. doi: 10.1007/s10238-025-01771-3.
3
Genome Editing Approaches Using Zinc Finger Nucleases (ZFNs) for the Treatment of Motor Neuron Diseases.
Curr Pharm Biotechnol. 2024 Jun 6. doi: 10.2174/0113892010307288240526071810.
5
Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1.
Front Aging Neurosci. 2021 Nov 15;13:755392. doi: 10.3389/fnagi.2021.755392. eCollection 2021.
7
Various Aspects of a Gene Editing System-CRISPR-Cas9.
Int J Mol Sci. 2020 Dec 16;21(24):9604. doi: 10.3390/ijms21249604.
8
Novel PGD strategy based on single sperm linkage analysis for carriers of single gene pathogenic variant and chromosome reciprocal translocation.
J Assist Reprod Genet. 2020 May;37(5):1239-1250. doi: 10.1007/s10815-020-01753-2. Epub 2020 Apr 29.
9
Development of a Facile Approach for Generating Chemically Modified CRISPR/Cas9 RNA.
Mol Ther Nucleic Acids. 2020 Mar 6;19:1176-1185. doi: 10.1016/j.omtn.2020.01.004. Epub 2020 Jan 16.
10
Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy.
Nat Med. 2019 Mar;25(3):427-432. doi: 10.1038/s41591-019-0344-3. Epub 2019 Feb 18.

本文引用的文献

1
The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome).
Neuromuscul Disord. 2015 Dec;25(12):991-1020. doi: 10.1016/j.nmd.2015.10.010. Epub 2015 Dec 2.
2
The emerging role of viral vectors as vehicles for DMD gene editing.
Genome Med. 2016 May 23;8(1):59. doi: 10.1186/s13073-016-0316-x.
3
Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.
Mol Ther. 2016 Aug;24(8):1378-87. doi: 10.1038/mt.2016.97. Epub 2016 May 12.
4
High-Throughput, High-Resolution Mapping of Protein Localization in Mammalian Brain by In Vivo Genome Editing.
Cell. 2016 Jun 16;165(7):1803-1817. doi: 10.1016/j.cell.2016.04.044. Epub 2016 May 12.
6
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.
7
Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo.
Nat Biotechnol. 2016 Mar;34(3):328-33. doi: 10.1038/nbt.3471. Epub 2016 Feb 1.
8
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.
Nat Biotechnol. 2016 Mar;34(3):334-8. doi: 10.1038/nbt.3469. Epub 2016 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验