Suppr超能文献

噬菌体疗法在细菌感染治疗中的应用:自噬菌体发现百年之后

Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages.

作者信息

Cisek Agata Anna, Dąbrowska Iwona, Gregorczyk Karolina Paulina, Wyżewski Zbigniew

机构信息

Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.

Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.

出版信息

Curr Microbiol. 2017 Feb;74(2):277-283. doi: 10.1007/s00284-016-1166-x. Epub 2016 Nov 28.

Abstract

The therapeutic use of bacteriophages has seen a renewal of interest blossom in the last few years. This reversion is due to increased difficulties in the treatment of antibiotic-resistant strains of bacteria. Bacterial resistance to antibiotics, a serious problem in contemporary medicine, does not implicate resistance to phage lysis mechanisms. Lytic bacteriophages are able to kill antibiotic-resistant bacteria at the end of the phage infection cycle. Thus, the development of phage therapy is potentially a way to improve the treatment of bacterial infections. However, there are antibacterial phage therapy difficulties specified by broadening the knowledge of the phage nature and influence on the host. It has been shown during experiments that both innate and adaptive immunity are involved in the clearance of phages from the body. Immunological reactions against phages are related to the route of administration and may vary depending on the type of bacterial viruses. For that reason, it is very important to test the immunological response of every single phage, particularly if intravenous therapy is being considered. The lack of these data in previous years was one of the reasons for phage therapy abandonment despite its century-long study. Promising results of recent research led us to look forward to a phage therapy that can be applied on a larger scale and subsequently put it into practice.

摘要

在过去几年中,噬菌体的治疗用途再度引发了人们的兴趣。这种转变是由于治疗耐抗生素细菌菌株的难度增加。细菌对抗生素的耐药性是当代医学中的一个严重问题,但并不意味着对噬菌体裂解机制具有抗性。裂解性噬菌体能够在噬菌体感染周期结束时杀死耐抗生素细菌。因此,噬菌体疗法的发展可能是改善细菌感染治疗的一种方法。然而,通过拓宽对噬菌体性质及其对宿主影响的认识,发现了抗菌噬菌体疗法存在一些困难。实验表明,固有免疫和适应性免疫都参与了体内噬菌体的清除。针对噬菌体的免疫反应与给药途径有关,可能因细菌病毒的类型而异。因此,测试每一种噬菌体的免疫反应非常重要,特别是在考虑静脉内治疗时。尽管对噬菌体疗法进行了长达一个世纪的研究,但前几年缺乏这些数据是其被放弃的原因之一。近期研究的 promising 结果使我们期待一种能够大规模应用并随后付诸实践的噬菌体疗法。 (注:“promising”原文拼写有误,应为“Promising” )

相似文献

1
Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages.
Curr Microbiol. 2017 Feb;74(2):277-283. doi: 10.1007/s00284-016-1166-x. Epub 2016 Nov 28.
2
Bacteriophages and its applications: an overview.
Folia Microbiol (Praha). 2017 Jan;62(1):17-55. doi: 10.1007/s12223-016-0471-x. Epub 2016 Oct 8.
3
Contribution of the Immune Response to Phage Therapy.
J Immunol. 2018 May 1;200(9):3037-3044. doi: 10.4049/jimmunol.1701745.
4
Phage Therapy in the Twenty-First Century: Facing the Decline of the Antibiotic Era; Is It Finally Time for the Age of the Phage?
Annu Rev Microbiol. 2019 Sep 8;73:155-174. doi: 10.1146/annurev-micro-090817-062535. Epub 2019 Jun 11.
6
[Phage therapy, an alternative to antibiotic therapy?)].
Rev Esp Quimioter. 2018 Apr;31(2):101-104. Epub 2018 Feb 16.
7
Bacteriophages: A Therapy Concept against Multi-Drug-Resistant Bacteria.
Surg Infect (Larchmt). 2018 Nov/Dec;19(8):737-744. doi: 10.1089/sur.2018.184. Epub 2018 Oct 9.
8
Phage Therapy: The Pharmacology of Antibacterial Viruses.
Curr Issues Mol Biol. 2021;40:81-164. doi: 10.21775/cimb.040.081. Epub 2020 Jun 6.
9
Phages and their potential to modulate the microbiome and immunity.
Cell Mol Immunol. 2021 Apr;18(4):889-904. doi: 10.1038/s41423-020-00532-4. Epub 2020 Sep 8.

引用本文的文献

1
Phage and enzyme therapies in wound infections: From lab to bedside.
Chin Med J (Engl). 2025 Sep 5;138(17):2102-2115. doi: 10.1097/CM9.0000000000003626. Epub 2025 Aug 4.
2
pharmacokinetics, therapeutic efficacy and immune response of bacteriophage vB_AbaSt_W16 against carbapenem-resistant .
JAC Antimicrob Resist. 2025 Jul 31;7(4):dlaf121. doi: 10.1093/jacamr/dlaf121. eCollection 2025 Aug.
3
Antibiotics re-booted-time to kick back against drug resistance.
NPJ Antimicrob Resist. 2025 May 30;3(1):47. doi: 10.1038/s44259-025-00096-1.
4
The virulent bacteriophage Henu8 as an antimicrobial synergist against .
Microbiol Spectr. 2025 Jul;13(7):e0163324. doi: 10.1128/spectrum.01633-24. Epub 2025 May 16.
6
Unveiling the potential bacteriophage therapy: a systematic review.
Future Sci OA. 2025 Dec;11(1):2468114. doi: 10.1080/20565623.2025.2468114. Epub 2025 Feb 20.
7
8
Current status of bacteriophage therapy for severe bacterial infections.
J Intensive Care. 2024 Nov 1;12(1):44. doi: 10.1186/s40560-024-00759-7.
9
Evaluation of phage-based decontamination in respiratory intensive care unit environments using ddPCR and 16S rRNA targeted sequencing techniques.
Front Cell Infect Microbiol. 2024 Aug 19;14:1442062. doi: 10.3389/fcimb.2024.1442062. eCollection 2024.

本文引用的文献

1
Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.
mBio. 2016 Aug 30;7(4):e01304-16. doi: 10.1128/mBio.01304-16.
2
Phospholipid vesicles encapsulated bacteriophage: A novel approach to enhance phage biodistribution.
J Virol Methods. 2016 Oct;236:68-76. doi: 10.1016/j.jviromet.2016.07.002. Epub 2016 Jul 5.
3
Control of campylobacter in poultry industry from farm to poultry processing unit: A review.
Crit Rev Food Sci Nutr. 2017 Mar 4;57(4):659-665. doi: 10.1080/10408398.2014.935847.
4
Bacteriophages and phage-derived proteins--application approaches.
Curr Med Chem. 2015;22(14):1757-73. doi: 10.2174/0929867322666150209152851.
6
Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.
J Food Prot. 2015 Jan;78(1):97-103. doi: 10.4315/0362-028X.JFP-14-041.
7
Phage display as a novel promising antivenom therapy: a review.
Toxicon. 2015 Jan;93:79-84. doi: 10.1016/j.toxicon.2014.11.001. Epub 2014 Nov 5.
8
Probing the structure of the S105 hole.
J Bacteriol. 2014 Nov;196(21):3683-9. doi: 10.1128/JB.01673-14. Epub 2014 Aug 4.
9
Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus.
Appl Microbiol Biotechnol. 2015 Jan;99(2):741-52. doi: 10.1007/s00253-014-5930-1. Epub 2014 Jul 20.
10
Phage therapy gets revitalized.
Nature. 2014 Jun 5;510(7503):15-6. doi: 10.1038/510015a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验