Suppr超能文献

对连续进行CTLA-4和PD-1阻断治疗的肿瘤活检组织进行综合分子分析,揭示了反应和耐药的标志物。

Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance.

作者信息

Roh Whijae, Chen Pei-Ling, Reuben Alexandre, Spencer Christine N, Prieto Peter A, Miller John P, Gopalakrishnan Vancheswaran, Wang Feng, Cooper Zachary A, Reddy Sangeetha M, Gumbs Curtis, Little Latasha, Chang Qing, Chen Wei-Shen, Wani Khalida, De Macedo Mariana Petaccia, Chen Eveline, Austin-Breneman Jacob L, Jiang Hong, Roszik Jason, Tetzlaff Michael T, Davies Michael A, Gershenwald Jeffrey E, Tawbi Hussein, Lazar Alexander J, Hwu Patrick, Hwu Wen-Jen, Diab Adi, Glitza Isabella C, Patel Sapna P, Woodman Scott E, Amaria Rodabe N, Prieto Victor G, Hu Jianhua, Sharma Padmanee, Allison James P, Chin Lynda, Zhang Jianhua, Wargo Jennifer A, Futreal P Andrew

机构信息

Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Cancer Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.

出版信息

Sci Transl Med. 2017 Mar 1;9(379). doi: 10.1126/scitranslmed.aah3560.

Abstract

Immune checkpoint blockade produces clinical benefit in many patients. However, better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen-4 (CTLA-4) followed by programmed death receptor-1 (PD-1) and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T cell receptor sequencing and whole-exome sequencing within the same cohort and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of CNAs identified a higher burden of copy number loss in nonresponders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was nonredundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy.

摘要

免疫检查点阻断在许多患者中产生了临床益处。然而,仍需要更好的反应生物标志物,并且耐药机制仍未完全了解。为了解决这个问题,我们最近研究了一组黑色素瘤患者,他们接受了针对细胞毒性T淋巴细胞抗原4(CTLA-4)的序贯检查点阻断治疗,随后接受程序性死亡受体1(PD-1)治疗,并确定了反应和耐药的免疫标志物。基于这些研究,我们在同一队列中进行了深度分子分析,包括T细胞受体测序和全外显子测序,并证明更克隆性的T细胞库可预测对PD-1的反应,但不能预测对CTLA-4阻断的反应。对拷贝数变异的分析发现,对CTLA-4和PD-1阻断无反应者的拷贝数丢失负担更高,并发现其与免疫相关途径中基因表达的降低有关。突变负荷和拷贝数丢失负担对反应的影响并非多余,这表明组合生物标志物在优化检查点阻断治疗的患者护理方面具有潜在效用。

相似文献

3
Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
Clin Cancer Res. 2013 Oct 15;19(20):5626-35. doi: 10.1158/1078-0432.CCR-13-0545. Epub 2013 Aug 27.
4
Immune Checkpoint Blockade in Cancer Therapy.
J Clin Oncol. 2015 Jun 10;33(17):1974-82. doi: 10.1200/JCO.2014.59.4358. Epub 2015 Jan 20.
5
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
J Immunol. 2015 Feb 1;194(3):950-9. doi: 10.4049/jimmunol.1401686. Epub 2014 Dec 24.
6
Genomic correlates of response to immune checkpoint blockade.
Nat Med. 2019 Mar;25(3):389-402. doi: 10.1038/s41591-019-0382-x. Epub 2019 Mar 6.
8
Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.
Cell. 2017 Sep 7;170(6):1120-1133.e17. doi: 10.1016/j.cell.2017.07.024. Epub 2017 Aug 10.
9
Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy.
Cancer Immunol Res. 2017 Jan;5(1):17-28. doi: 10.1158/2326-6066.CIR-16-0206. Epub 2016 Dec 21.
10
[Predictive biomarkers of efficacy of checkpoint blockade inhibitors in cancer treatment].
Ann Pathol. 2017 Feb;37(1):46-54. doi: 10.1016/j.annpat.2016.12.016. Epub 2017 Jan 26.

引用本文的文献

1
Adaptive individualized gene pair signatures distinguishing melanoma and predicting response to immune checkpoint blockade.
iScience. 2025 Aug 8;28(9):113329. doi: 10.1016/j.isci.2025.113329. eCollection 2025 Sep 19.
2
A mutational process signature and genomic alterations associated with outcome and immunogenicity in cancers with brain metastasis.
Front Immunol. 2025 Jul 30;16:1607772. doi: 10.3389/fimmu.2025.1607772. eCollection 2025.
5
Exploring PTPN6 as a dual oncogenic and immunological marker in melanoma.
Discov Oncol. 2025 Jul 1;16(1):1203. doi: 10.1007/s12672-025-03038-5.
10
Generalizable AI predicts immunotherapy outcomes across cancers and treatments.
medRxiv. 2025 May 5:2025.05.01.25326820. doi: 10.1101/2025.05.01.25326820.

本文引用的文献

1
Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy.
Cell. 2016 Oct 6;167(2):397-404.e9. doi: 10.1016/j.cell.2016.08.069. Epub 2016 Sep 22.
2
Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma.
N Engl J Med. 2016 Sep 1;375(9):819-29. doi: 10.1056/NEJMoa1604958. Epub 2016 Jul 13.
4
From melanocytes to melanomas.
Nat Rev Cancer. 2016 Jun;16(6):345-58. doi: 10.1038/nrc.2016.37. Epub 2016 Apr 29.
6
Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma.
Cell. 2016 Mar 24;165(1):35-44. doi: 10.1016/j.cell.2016.02.065. Epub 2016 Mar 17.
7
Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism.
Nature. 2016 Mar 31;531(7596):651-5. doi: 10.1038/nature17412. Epub 2016 Mar 16.
8
Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
Cancer Discov. 2016 Feb;6(2):202-16. doi: 10.1158/2159-8290.CD-15-0283. Epub 2015 Dec 8.
9
The Genetic Evolution of Melanoma from Precursor Lesions.
N Engl J Med. 2015 Nov 12;373(20):1926-36. doi: 10.1056/NEJMoa1502583.
10
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.
Science. 2015 Nov 27;350(6264):1079-84. doi: 10.1126/science.aad1329. Epub 2015 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验