1 MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Liverpool, United Kingdom .
2 Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan.
Antioxid Redox Signal. 2018 Feb 1;28(4):275-295. doi: 10.1089/ars.2017.7249. Epub 2017 Dec 12.
Lack of Cu,Zn-superoxide dismutase (CuZnSOD) in homozygous knockout mice (Sod1) leads to accelerated age-related muscle loss and weakness, but specific deletion of CuZnSOD in skeletal muscle (mSod1KO mice) or neurons (nSod1KO mice) resulted in only mild muscle functional deficits and failed to recapitulate the loss of mass and function observed in Sod1 mice. To dissect any underlying cross-talk between motor neurons and skeletal muscle in the degeneration in Sod1 mice, we characterized neuromuscular changes in the Sod1 model compared with mSod1KO mice and examined degenerative molecular mechanisms and pathways in peripheral nerve and skeletal muscle.
In contrast to mSod1KO mice, myofiber atrophy in Sod1 mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1 mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1 nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1 mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1 and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1 mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275-295.
在纯合敲除小鼠(Sod1)中缺乏铜锌超氧化物歧化酶(CuZnSOD)会导致加速的与年龄相关的肌肉损失和虚弱,但在骨骼肌(mSod1KO 小鼠)或神经元(nSod1KO 小鼠)中特异性缺失 CuZnSOD 只会导致轻微的肌肉功能缺陷,无法重现 Sod1 小鼠中观察到的质量和功能丧失。为了剖析 Sod1 小鼠退化过程中运动神经元和骨骼肌之间的任何潜在的交叉对话,我们比较了 Sod1 模型与 mSod1KO 小鼠的神经肌肉变化,并研究了周围神经和骨骼肌中的退行性分子机制和途径。
与 mSod1KO 小鼠不同,Sod1 小鼠的肌纤维萎缩与肌肉氧化损伤增加、神经肌肉接头退化、去神经支配、神经脱髓鞘以及参与髓鞘维持的蛋白质上调有关。蛋白质组学分析证实,Sod1 小鼠的肌肉中存在增加的蛋白酶体活性和适应性应激反应,而 mSod1KO 小鼠则没有。与野生型小鼠相比,Sod1 和 mSod1KO 小鼠的周围神经均未显示出氧化损伤增加或对氧化增加的分子反应增加。差异半胱氨酸(Cys)标记显示,Sod1 小鼠周围神经中的过氧化物酶 6(Cys47)的催化 Cys 残基发生了特定的氧化还原变化。创新与结论:这些发现表明,Sod1 和 mSod1KO 小鼠的神经和肌肉中的神经肌肉完整性、氧化还原机制和途径存在差异。结果支持这样的概念,即氧化还原信号受损而不是氧化损伤在 Sod1 小鼠的肌肉损失以及衰老过程中的肌肉减少中起着关键作用。抗氧化。氧化还原信号。28,275-295。