Department of Periodontics and Oral Medicine, The University of Michigan School of Dentistry, Ann Arbor, Michigan.
University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.
Clin Cancer Res. 2018 Sep 1;24(17):4242-4255. doi: 10.1158/1078-0432.CCR-17-2807. Epub 2018 May 16.
The response rates of Head and Neck Squamous Cell Carcinoma (HNSCC) to checkpoint blockade are below 20%. We aim to develop a mechanism-based vaccine to prevent HNSCC immune escape. We performed RNA-Seq of sensitive and resistant HNSCC cells to discover central pathways promoting resistance to immune killing. Using biochemistry, animal models, HNSCC microarray, and immune cell deconvolution, we assessed the role of SOX2 in inhibiting STING-type I interferon (IFN-I) signaling-mediated antitumor immunity. To bypass SOX2-potentiated STING suppression, we engineered a novel tumor antigen-targeted nanosatellite vehicle to enhance the efficacy of STING agonist and sensitize SOX2-expressing HNSCC to checkpoint blockade. The DNA-sensing defense response is the most suppressed pathway in immune-resistant HNSCC cells. We identified SOX2 as a novel inhibitor of STING. SOX2 facilitates autophagy-dependent degradation of STING and inhibits IFN-I signaling. SOX2 potentiates an immunosuppressive microenvironment and promotes HNSCC growth in an IFN-I-dependent fashion. Our unique nanosatellite vehicle significantly enhances the efficacy of STING agonist. We show that the E6/E7-targeted nanosatellite vaccine expands the tumor-specific CD8 T cells by over 12-fold in the tumor microenvironment and reduces tumor burden. A combination of nanosatellite vaccine with anti-PD-L1 significantly expands tumor-specific CTLs and limits the populations expressing markers for exhaustion, resulting in more effective tumor control and improved survival. SOX2 dampens the immunogenicity of HNSCC by targeting the STING pathway for degradation. The nanosatellite vaccine offers a novel and effective approach to enhance the adjuvant potential of STING agonist and break cancer tolerance to immunotherapy. .
头颈部鳞状细胞癌(HNSCC)对检查点阻断的反应率低于 20%。我们旨在开发一种基于机制的疫苗来预防 HNSCC 的免疫逃逸。我们对头颈部鳞状细胞癌敏感和耐药细胞进行了 RNA-Seq,以发现促进耐药性的核心途径。我们使用生物化学、动物模型、头颈部鳞状细胞癌微阵列和免疫细胞去卷积,评估了 SOX2 在抑制 STING 型 I 干扰素(IFN-I)信号转导介导的抗肿瘤免疫中的作用。为了绕过 SOX2 增强的 STING 抑制,我们设计了一种新型肿瘤抗原靶向纳米卫星载体,以增强 STING 激动剂的疗效,并使表达 SOX2 的 HNSCC 对检查点阻断敏感。DNA 感应防御反应是免疫耐药性 HNSCC 细胞中受抑制最严重的途径。我们鉴定了 SOX2 是 STING 的一种新型抑制剂。SOX2 促进 STING 的自噬依赖性降解并抑制 IFN-I 信号转导。SOX2 增强了免疫抑制微环境,并以 IFN-I 依赖的方式促进 HNSCC 的生长。我们独特的纳米卫星载体显著增强了 STING 激动剂的疗效。我们表明,E6/E7 靶向的纳米卫星疫苗在肿瘤微环境中使肿瘤特异性 CD8 T 细胞扩增超过 12 倍,并减少肿瘤负担。纳米卫星疫苗与抗 PD-L1 的联合使用显著扩增了肿瘤特异性 CTL,并限制了表达衰竭标志物的细胞群体,从而更有效地控制肿瘤并提高生存率。SOX2 通过靶向 STING 通路进行降解来降低 HNSCC 的免疫原性。纳米卫星疫苗提供了一种新颖有效的方法来增强 STING 激动剂的佐剂潜力,并打破癌症对免疫治疗的耐受性。