Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724.
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
J Neurosci. 2018 Jun 13;38(24):5567-5583. doi: 10.1523/JNEUROSCI.0705-18.2018. Epub 2018 May 29.
Both the amygdala and the bed nucleus of the stria terminalis (BNST) have been implicated in maladaptive anxiety characteristics of anxiety disorders. However, the underlying circuit and cellular mechanisms have remained elusive. Here we show that mice with gene deficiency in somatostatin-expressing (SOM) neurons exhibit heightened anxiety as measured in the elevated plus maze test and the open field test, two assays commonly used to assess anxiety-related behaviors in rodents. Using a combination of electrophysiological, molecular, genetic, and pharmacological techniques, we demonstrate that the abnormal anxiety in the mutant mice is caused by enhanced excitatory synaptic inputs onto SOM neurons in the central amygdala (CeA), and the resulting reduction in inhibition onto downstream SOM neurons in the BNST. Notably, our results indicate that an increase in dynorphin signaling in SOM CeA neurons mediates the paradoxical reduction in inhibition onto SOM BNST neurons, and that the consequent enhanced activity of SOM BNST neurons is both necessary for and sufficient to drive the elevated anxiety. Finally, we show that the elevated anxiety and the associated synaptic dysfunctions and increased dynorphin signaling in the CeA-BNST circuit of the mutant mice can be recapitulated by stress in wild-type mice. Together, our results unravel previously unknown circuit and cellular processes in the central extended amygdala that can cause maladaptive anxiety. The central extended amygdala has been implicated in anxiety-related behaviors, but the underlying mechanisms are unclear. Here we found that somatostatin-expressing neurons in the central amygdala (CeA) controls anxiety through modulation of the stria terminalis, a process that is mediated by an increase in dynorphin signaling in the CeA. Our results reveal circuit and cellular dysfunctions that may account for maladaptive anxiety.
杏仁核和终纹床核(BNST)都与焦虑障碍的适应性焦虑特征有关。然而,潜在的回路和细胞机制仍然难以捉摸。在这里,我们展示了在生长抑素表达(SOM)神经元中基因缺失的小鼠表现出升高的焦虑,如在高架十字迷宫测试和开阔场测试中测量的,这两种测试常用于评估啮齿动物的焦虑相关行为。使用电生理、分子、遗传和药理学技术的组合,我们证明了突变小鼠的异常焦虑是由中央杏仁核(CeA)中 SOM 神经元的兴奋性突触输入增强引起的,并且导致 BNST 中下游 SOM 神经元的抑制减少。值得注意的是,我们的结果表明,SOM CeA 神经元中内啡肽信号的增加介导了对 SOM BNST 神经元的抑制的反常减少,并且 SOM BNST 神经元的随后增强的活性既是必要的也是充分的驱动升高的焦虑。最后,我们表明,在 突变小鼠的 CeA-BNST 回路中,升高的焦虑以及相关的突触功能障碍和内啡肽信号的增加,可以通过野生型小鼠的应激来重现。总之,我们的结果揭示了中央扩展杏仁核中以前未知的回路和细胞过程,这些过程可能导致适应性焦虑。中央扩展杏仁核与焦虑相关行为有关,但潜在的机制尚不清楚。在这里,我们发现,中央杏仁核(CeA)中的生长抑素表达神经元通过调节终纹床核来控制焦虑,这一过程是由 CeA 中内啡肽信号的增加介导的。我们的结果揭示了可能导致适应性焦虑的回路和细胞功能障碍。