Suppr超能文献

CRISPR/Cas9 生成的肌肉营养不良症猴模型中功能基因组区域无脱靶突变。

No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy.

机构信息

From the Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China and.

the Yunnan Provincial Academy of Science and Technology, Kunming 650051, China.

出版信息

J Biol Chem. 2018 Jul 27;293(30):11654-11658. doi: 10.1074/jbc.AC118.004404. Epub 2018 Jun 25.

Abstract

CRISPR/Cas9 is now widely used in biomedical research and has great potential for clinical applications. However, the safety and efficacy of this gene-editing technique are significant issues. Recent reports on mouse models and human cells have raised concerns that off-target mutations could hamper applying the CRISPR technology in patients. The high similarities of nonhuman primates to humans in genome content and organization, genetic diversity, physiology, and cognitive abilities have made these animals ideal experimental models for understanding human diseases and developing therapeutics. Off-target mutations of CRISPR/Cas9 have been analyzed in previous studies of nonhuman primates, but no report has investigated genome-wide off-target effects in living monkeys. Here, we used rhesus monkeys in which a genetic disorder mimicking Duchenne muscular dystrophy had previously been produced with CRISPR/Cas9. Using whole-genome sequencing to comprehensively assess on- and off-target mutations in these animals, we found that CRISPR/Cas9-based gene editing is active on the expected genomic sites without producing off-target modifications in other functional regions of the genome. These findings suggest that the CRISPR/Cas9 technique could be relatively safe and effective in modeling genetic disease in nonhuman primates and in future therapeutic research of human diseases.

摘要

CRISPR/Cas9 现在被广泛应用于生物医学研究,并具有巨大的临床应用潜力。然而,这种基因编辑技术的安全性和有效性是一个重大问题。最近在小鼠模型和人类细胞上的报告引起了人们的担忧,即脱靶突变可能会阻碍 CRISPR 技术在患者中的应用。非人类灵长类动物在基因组内容和组织、遗传多样性、生理学和认知能力方面与人类非常相似,这使它们成为理解人类疾病和开发治疗方法的理想实验模型。以前的非人类灵长类动物研究已经分析了 CRISPR/Cas9 的脱靶突变,但没有报告研究过活体猴子中的全基因组脱靶效应。在这里,我们使用恒河猴,之前已经使用 CRISPR/Cas9 制造了一种模拟杜氏肌营养不良症的遗传疾病。通过全基因组测序全面评估这些动物的靶和脱靶突变,我们发现 CRISPR/Cas9 基的基因编辑在预期的基因组位点上是活跃的,而不会在基因组的其他功能区域产生脱靶修饰。这些发现表明,CRISPR/Cas9 技术在非人类灵长类动物的遗传疾病建模和人类疾病的未来治疗研究中可能相对安全和有效。

相似文献

1
No off-target mutations in functional genome regions of a CRISPR/Cas9-generated monkey model of muscular dystrophy.
J Biol Chem. 2018 Jul 27;293(30):11654-11658. doi: 10.1074/jbc.AC118.004404. Epub 2018 Jun 25.
2
Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.
Hum Mol Genet. 2015 Jul 1;24(13):3764-74. doi: 10.1093/hmg/ddv120. Epub 2015 Apr 9.
3
Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.
JAMA Neurol. 2016 Nov 1;73(11):1349-1355. doi: 10.1001/jamaneurol.2016.3388.
4
CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy.
Neurotherapeutics. 2022 Apr;19(3):931-941. doi: 10.1007/s13311-022-01197-9. Epub 2022 Feb 14.
5
Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies.
Hum Gene Ther. 2023 May;34(9-10):388-403. doi: 10.1089/hum.2023.059.
6
7
CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments.
Cells. 2024 May 8;13(10):800. doi: 10.3390/cells13100800.
8
A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9.
Dis Model Mech. 2018 Jun 4;11(6):dmm032201. doi: 10.1242/dmm.032201.
9
Scalpel or Straitjacket: CRISPR/Cas9 Approaches for Muscular Dystrophies.
Trends Pharmacol Sci. 2016 Apr;37(4):249-251. doi: 10.1016/j.tips.2016.02.001. Epub 2016 Feb 22.

引用本文的文献

1
Gene Editing for Duchenne Muscular Dystrophy: From Experimental Models to Emerging Therapies.
Degener Neurol Neuromuscul Dis. 2025 Apr 12;15:17-40. doi: 10.2147/DNND.S495536. eCollection 2025.
2
CRISPR/Cas9 systems: Delivery technologies and biomedical applications.
Asian J Pharm Sci. 2023 Nov;18(6):100854. doi: 10.1016/j.ajps.2023.100854. Epub 2023 Oct 21.
3
AAV-CRISPR-Cas13 eliminates human enterovirus and prevents death of infected mice.
EBioMedicine. 2023 Jul;93:104682. doi: 10.1016/j.ebiom.2023.104682. Epub 2023 Jun 28.
5
Whole Genome Sequencing Analysis of Effects of CRISPR/Cas9 in : A Budding Yeast in Distress.
J Fungi (Basel). 2022 Sep 21;8(10):992. doi: 10.3390/jof8100992.
7
CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies.
WIREs Mech Dis. 2023 Jan;15(1):e1580. doi: 10.1002/wsbm.1580. Epub 2022 Jul 31.
8
Application of CRISPR/Cas9 System in Establishing Large Animal Models.
Front Cell Dev Biol. 2022 May 17;10:919155. doi: 10.3389/fcell.2022.919155. eCollection 2022.
10
Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell.
Front Bioeng Biotechnol. 2021 Nov 19;9:775309. doi: 10.3389/fbioe.2021.775309. eCollection 2021.

本文引用的文献

1
CRISPR off-target analysis in genetically engineered rats and mice.
Nat Methods. 2018 Jul;15(7):512-514. doi: 10.1038/s41592-018-0011-5. Epub 2018 May 21.
4
Off-target mutations are rare in Cas9-modified mice.
Nat Methods. 2015 Jun;12(6):479. doi: 10.1038/nmeth.3408.
5
CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool.
PLoS One. 2015 Apr 24;10(4):e0124633. doi: 10.1371/journal.pone.0124633. eCollection 2015.
6
Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.
Hum Mol Genet. 2015 Jul 1;24(13):3764-74. doi: 10.1093/hmg/ddv120. Epub 2015 Apr 9.
9
Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects.
Nat Methods. 2014 Apr;11(4):399-402. doi: 10.1038/nmeth.2857. Epub 2014 Mar 2.
10
Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.
Cell. 2014 Feb 13;156(4):836-43. doi: 10.1016/j.cell.2014.01.027. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验