Suppr超能文献

肠道稳态和损伤中的储备干细胞。

Reserve Stem Cells in Intestinal Homeostasis and Injury.

机构信息

Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California; Department of Biology, Stanford University, Stanford, California.

出版信息

Gastroenterology. 2018 Nov;155(5):1348-1361. doi: 10.1053/j.gastro.2018.08.016. Epub 2018 Aug 15.

Abstract

Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.

摘要

肠道上皮细胞的更新大约每星期发生一次,需要在细胞增殖和分化之间保持精细的平衡,以维持适当的谱系比例,并支持吸收、分泌和屏障功能。我们综述了用于研究肠道干细胞(ISC)在稳态下为上皮细胞的快速更新提供动力的机制的模型,以及这些机制可能在损伤后支持上皮再生的情况。在隐窝干细胞生态位的解剖定义区域中,据信表型不同的活跃和储备 ISC 群体分别支持稳态上皮更新和损伤诱导的再生。然而,以前被认为是定向分化状态的其他细胞类型也可能具有 ISC 活性并参与再生。目前正在努力协调储备 ISC 池与其分化后代之间提出的相对严格的层次关系;模型研究结果为表型可塑性提供了证据,这种可塑性在许多(如果不是全部)隐窝驻留的肠道上皮细胞中都很常见。我们讨论了对 ISC 命名法达成共识的挑战、技术考虑因素以及用于定义储备 ISC 的方法固有的局限性,以及需要标准化指标来量化和比较不同上皮细胞类型对稳态更新和损伤后再生的相对贡献。增加对调节储备 ISC 功能和细胞可塑性的高分辨率遗传和表观遗传机制的理解,将有助于完善这些模型,并可能影响促进肠道损伤后组织再生的方法。

相似文献

1
Reserve Stem Cells in Intestinal Homeostasis and Injury.
Gastroenterology. 2018 Nov;155(5):1348-1361. doi: 10.1053/j.gastro.2018.08.016. Epub 2018 Aug 15.
2
Hallmarks of intestinal stem cells.
Development. 2020 Aug 3;147(15):dev182675. doi: 10.1242/dev.182675.
3
The Intestinal Stem Cell Niche: Homeostasis and Adaptations.
Trends Cell Biol. 2018 Dec;28(12):1062-1078. doi: 10.1016/j.tcb.2018.08.001. Epub 2018 Sep 5.
4
HOPX injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia.
Am J Physiol Gastrointest Liver Physiol. 2021 Nov 1;321(5):G588-G602. doi: 10.1152/ajpgi.00165.2021. Epub 2021 Sep 22.
5
IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations.
FASEB J. 2015 Jul;29(7):2828-42. doi: 10.1096/fj.14-264010. Epub 2015 Apr 2.
6
Evolution of pig intestinal stem cells from birth to weaning.
Animal. 2019 Dec;13(12):2830-2839. doi: 10.1017/S1751731119001319. Epub 2019 Jun 14.
7
Recent advances in understanding intestinal stem cell regulation.
F1000Res. 2019 Jan 18;8. doi: 10.12688/f1000research.16793.1. eCollection 2019.
9
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium.
Curr Top Dev Biol. 2023;153:281-326. doi: 10.1016/bs.ctdb.2023.01.001. Epub 2023 Feb 1.
10
Krüppel-like Factor 5 Regulates Stemness, Lineage Specification, and Regeneration of Intestinal Epithelial Stem Cells.
Cell Mol Gastroenterol Hepatol. 2020;9(4):587-609. doi: 10.1016/j.jcmgh.2019.11.009. Epub 2019 Nov 25.

引用本文的文献

1
Colorectal cancer heterogeneity co-evolves with tumor architecture to determine disease outcome.
bioRxiv. 2025 Aug 13:2025.08.11.669722. doi: 10.1101/2025.08.11.669722.
3
Polyamines regulate mitochondrial metabolism essential for intestinal epithelial renewal and wound healing.
Am J Physiol Gastrointest Liver Physiol. 2025 Jul 1;329(1):G191-G200. doi: 10.1152/ajpgi.00023.2025. Epub 2025 Jun 5.
4
A secreted helminth microRNA suppresses gastrointestinal cell differentiation required for innate immunity.
Front Immunol. 2025 Mar 27;16:1558132. doi: 10.3389/fimmu.2025.1558132. eCollection 2025.
5
The emerging role of intestinal stem cells in ulcerative colitis.
Front Med (Lausanne). 2025 Mar 25;12:1569328. doi: 10.3389/fmed.2025.1569328. eCollection 2025.
7
Obese Adipose Tissue Extracellular Vesicles Activate Mitochondrial Fatty Acid β-oxidation to Drive Colonic Stemness.
Cell Mol Gastroenterol Hepatol. 2025;19(7):101504. doi: 10.1016/j.jcmgh.2025.101504. Epub 2025 Mar 22.
9
A Lgr5-independent developmental lineage is involved in mouse intestinal regeneration.
Development. 2025 Apr 1;152(7). doi: 10.1242/dev.204654. Epub 2025 Apr 10.

本文引用的文献

1
A single-cell survey of the small intestinal epithelium.
Nature. 2017 Nov 16;551(7680):333-339. doi: 10.1038/nature24489. Epub 2017 Nov 8.
2
Hierarchy and Plasticity in the Intestinal Stem Cell Compartment.
Trends Cell Biol. 2017 Oct;27(10):753-764. doi: 10.1016/j.tcb.2017.06.006. Epub 2017 Jul 18.
3
Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.
FASEB J. 2017 Nov;31(11):4707-4719. doi: 10.1096/fj.201700141RR. Epub 2017 Jul 14.
4
Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity.
Cell Stem Cell. 2017 Jul 6;21(1):78-90.e6. doi: 10.1016/j.stem.2017.06.014.
6
Non-equivalence of Wnt and R-spondin ligands during Lgr5 intestinal stem-cell self-renewal.
Nature. 2017 May 11;545(7653):238-242. doi: 10.1038/nature22313. Epub 2017 May 3.
7
Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells.
Cell Stem Cell. 2017 Jun 1;20(6):801-816.e7. doi: 10.1016/j.stem.2017.02.007. Epub 2017 Mar 9.
8
Telomeres in cancer: tumour suppression and genome instability.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):175-186. doi: 10.1038/nrm.2016.171. Epub 2017 Jan 18.
9
Msi RNA-binding proteins control reserve intestinal stem cell quiescence.
J Cell Biol. 2016 Nov 7;215(3):401-413. doi: 10.1083/jcb.201604119. Epub 2016 Oct 31.
10
Wnt pathway regulation of intestinal stem cells.
J Physiol. 2016 Sep 1;594(17):4837-47. doi: 10.1113/JP271754. Epub 2016 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验