Suppr超能文献

CRISPR-Cas 引领基因编辑的未来。

CRISPR-Cas guides the future of genetic engineering.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

Department of Chemistry, University of California, Berkeley, CA, USA.

出版信息

Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011.

Abstract

The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.

摘要

CRISPR-Cas 系统的多样性、模块化和高效性正在推动一场生物技术革命。RNA 指导的 Cas 酶已被用作工具来操作培养细胞、动物和植物的基因组,加速了基础研究的步伐,并实现了临床和农业的突破。我们描述了使 CRISPR-Cas 工具包有别于其他可编程基因编辑技术的基本机制,强调了现在功能化为生物技术的多样化和自然进化的系统。我们讨论了 CRISPR-Cas 应用的快速发展,从基因编辑到转录调控、成像和诊断。不断进行的功能剖析和不断扩大的应用领域使 CRISPR-Cas 工具处于重新书写生物学的核酸操作的前沿。

相似文献

1
CRISPR-Cas guides the future of genetic engineering.
Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011.
2
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
3
Advances in Industrial Biotechnology Using CRISPR-Cas Systems.
Trends Biotechnol. 2018 Feb;36(2):134-146. doi: 10.1016/j.tibtech.2017.07.007. Epub 2017 Aug 1.
4
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.
5
Engineering the Delivery System for CRISPR-Based Genome Editing.
Trends Biotechnol. 2018 Feb;36(2):173-185. doi: 10.1016/j.tibtech.2017.11.006. Epub 2018 Jan 2.
6
CRISPR/Cas9 in Genome Editing and Beyond.
Annu Rev Biochem. 2016 Jun 2;85:227-64. doi: 10.1146/annurev-biochem-060815-014607. Epub 2016 Apr 25.
7
RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering.
Nat Cell Biol. 2020 Feb;22(2):143-150. doi: 10.1038/s41556-019-0454-7. Epub 2020 Feb 3.
8
CRISPR-Based Gene Drives for Pest Control.
Trends Biotechnol. 2018 Feb;36(2):130-133. doi: 10.1016/j.tibtech.2017.10.001.
9
Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1.
Nat Commun. 2017 Nov 23;8(1):1723. doi: 10.1038/s41467-017-01650-w.
10
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications.
ACS Chem Biol. 2018 Feb 16;13(2):347-356. doi: 10.1021/acschembio.7b00800. Epub 2017 Dec 5.

引用本文的文献

3
Hearing loss: a global view for gene therapy approaches and challenges.
Eur J Pediatr. 2025 Aug 27;184(9):578. doi: 10.1007/s00431-025-06426-9.
5
Genome Editing Breeding with CRISPR-Cas Nucleases, Base Editors, and Prime Editors.
Animals (Basel). 2025 Jul 22;15(15):2161. doi: 10.3390/ani15152161.
6
Optimization of in vivo delivery methods and their applications in seminiferous tubules of mice.
BMC Biotechnol. 2025 Aug 12;25(1):83. doi: 10.1186/s12896-025-01021-0.
8
CRISPR/Cas system-guided plasmid mutagenesis without sequence restriction.
Fundam Res. 2022 Jul 15;5(4):1481-1487. doi: 10.1016/j.fmre.2022.06.017. eCollection 2025 Jul.
9
Genetic and molecular approaches for Fusarium wilt resistance in garden pea: advances and future outlook.
Plant Mol Biol. 2025 Jul 23;115(4):89. doi: 10.1007/s11103-025-01624-3.
10
A Critical Review of the CRISPR-Cas Technology in the Detection of SARS-CoV-2 Variants.
Can J Infect Dis Med Microbiol. 2025 Jul 9;2025:9107724. doi: 10.1155/cjid/9107724. eCollection 2025.

本文引用的文献

1
Genome Editing B.C. (Before CRISPR): Lasting Lessons from the "Old Testament".
CRISPR J. 2018 Feb;1(1):34-46. doi: 10.1089/crispr.2018.29007.fyu.
2
Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA induces homology-directed DNA repair.
Nat Biomed Eng. 2017;1:889-901. doi: 10.1038/s41551-017-0137-2. Epub 2017 Oct 2.
3
Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.
Mol Cell. 2018 Apr 19;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub 2018 Mar 15.
4
Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.
Cell. 2018 Apr 19;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033. Epub 2018 Mar 15.
5
CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.
Mol Cell. 2018 Mar 1;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.
6
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.
7
Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene.
Cell. 2018 Feb 22;172(5):979-992.e6. doi: 10.1016/j.cell.2018.01.012. Epub 2018 Feb 15.
8
Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing.
Sci Adv. 2018 Jan 31;4(1):eaap9004. doi: 10.1126/sciadv.aap9004. eCollection 2018 Jan.
9
Partial DNA-guided Cas9 enables genome editing with reduced off-target activity.
Nat Chem Biol. 2018 Mar;14(3):311-316. doi: 10.1038/nchembio.2559. Epub 2018 Jan 29.
10
CRISPR/Cas9 genome editing in human hematopoietic stem cells.
Nat Protoc. 2018 Feb;13(2):358-376. doi: 10.1038/nprot.2017.143. Epub 2018 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验