Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
Department of Chemistry, University of California, Berkeley, CA, USA.
Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011.
The diversity, modularity, and efficacy of CRISPR-Cas systems are driving a biotechnological revolution. RNA-guided Cas enzymes have been adopted as tools to manipulate the genomes of cultured cells, animals, and plants, accelerating the pace of fundamental research and enabling clinical and agricultural breakthroughs. We describe the basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies. We discuss the rapidly evolving landscape of CRISPR-Cas applications, from gene editing to transcriptional regulation, imaging, and diagnostics. Continuing functional dissection and an expanding landscape of applications position CRISPR-Cas tools at the cutting edge of nucleic acid manipulation that is rewriting biology.
CRISPR-Cas 系统的多样性、模块化和高效性正在推动一场生物技术革命。RNA 指导的 Cas 酶已被用作工具来操作培养细胞、动物和植物的基因组,加速了基础研究的步伐,并实现了临床和农业的突破。我们描述了使 CRISPR-Cas 工具包有别于其他可编程基因编辑技术的基本机制,强调了现在功能化为生物技术的多样化和自然进化的系统。我们讨论了 CRISPR-Cas 应用的快速发展,从基因编辑到转录调控、成像和诊断。不断进行的功能剖析和不断扩大的应用领域使 CRISPR-Cas 工具处于重新书写生物学的核酸操作的前沿。