Suppr超能文献

使用UMAP进行单细胞数据可视化的降维方法。

Dimensionality reduction for visualizing single-cell data using UMAP.

作者信息

Becht Etienne, McInnes Leland, Healy John, Dutertre Charles-Antoine, Kwok Immanuel W H, Ng Lai Guan, Ginhoux Florent, Newell Evan W

机构信息

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Tutte Institute for Mathematics and Computing, Ottawa, Ontario, Canada.

出版信息

Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.

Abstract

Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.

摘要

单细胞技术的进步使得对组织组成进行高分辨率剖析成为可能。有几种降维工具可用于分析单细胞研究中产生的大量参数。最近,一种非线性降维技术——均匀流形近似与投影(UMAP)被开发出来用于分析任何类型的高维数据。在此,我们将其应用于生物数据,使用了三个特征明确的质谱流式细胞术和单细胞RNA测序数据集。将UMAP与其他五种工具的性能进行比较,我们发现UMAP提供了最快的运行时间、最高的可重复性以及最有意义的细胞簇组织方式。这项工作突出了UMAP在改善单细胞数据可视化和解释方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验