Becht Etienne, McInnes Leland, Healy John, Dutertre Charles-Antoine, Kwok Immanuel W H, Ng Lai Guan, Ginhoux Florent, Newell Evan W
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Tutte Institute for Mathematics and Computing, Ottawa, Ontario, Canada.
Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.
单细胞技术的进步使得对组织组成进行高分辨率剖析成为可能。有几种降维工具可用于分析单细胞研究中产生的大量参数。最近,一种非线性降维技术——均匀流形近似与投影(UMAP)被开发出来用于分析任何类型的高维数据。在此,我们将其应用于生物数据,使用了三个特征明确的质谱流式细胞术和单细胞RNA测序数据集。将UMAP与其他五种工具的性能进行比较,我们发现UMAP提供了最快的运行时间、最高的可重复性以及最有意义的细胞簇组织方式。这项工作突出了UMAP在改善单细胞数据可视化和解释方面的应用。