Suppr超能文献

使用 COBRA Toolbox v.3.0 创建和分析基于生化约束的模型。

Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.

机构信息

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.

Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.

出版信息

Nat Protoc. 2019 Mar;14(3):639-702. doi: 10.1038/s41596-018-0098-2.

Abstract

Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.

摘要

约束重建与分析(COBRA)为整合分析实验分子系统生物学数据和对物理化学及生物化学可行表型状态进行定量预测提供了一个分子机理框架。COBRA 工具箱是一套综合性的桌面软件套件,其中包含可互操作的 COBRA 方法。它在生物学、生物医学和生物技术领域得到了广泛的应用,因为其功能可以灵活组合,为任何生化网络实现定制的 COBRA 方案。本方案是 COBRA 工具箱 v.1.0 和 v.2.0 的更新版本。版本 3.0 包括用于质量控制重建、建模、拓扑分析、菌株和实验设计以及网络可视化的新方法,以及化学信息学、代谢组学、转录组学、蛋白质组学和热化学数据的网络整合。新的多语言代码集成还分别通过用于多尺度、多细胞和反应动力学建模的高精度、高性能和非线性数值优化求解器,扩展了 COBRA 的应用范围。本方案概述了所有这些新特性,并可进行调整,以在各种场景下生成和分析基于约束的模型。COBRA 工具箱 v.3.0 提供了前所未有的 COBRA 方法深度。

相似文献

1
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.
Nat Protoc. 2019 Mar;14(3):639-702. doi: 10.1038/s41596-018-0098-2.
2
4
FastMM: an efficient toolbox for personalized constraint-based metabolic modeling.
BMC Bioinformatics. 2020 Feb 21;21(1):67. doi: 10.1186/s12859-020-3410-4.
5
A Beginner's Guide to the COBRA Toolbox.
Methods Mol Biol. 2022;2349:339-365. doi: 10.1007/978-1-0716-1585-0_15.
6
COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
BMC Syst Biol. 2013 Aug 8;7:74. doi: 10.1186/1752-0509-7-74.
7
ORCA: a COBRA toolbox extension for model-driven discovery and analysis.
Bioinformatics. 2014 Feb 15;30(4):584-5. doi: 10.1093/bioinformatics/btt723. Epub 2013 Dec 13.
8
Tn-Core: A Toolbox for Integrating Tn-seq Gene Essentiality Data and Constraint-Based Metabolic Modeling.
ACS Synth Biol. 2019 Jan 18;8(1):158-169. doi: 10.1021/acssynbio.8b00432. Epub 2018 Dec 27.
9
Curating COBRA Models of Microbial Metabolism.
Methods Mol Biol. 2022;2349:321-338. doi: 10.1007/978-1-0716-1585-0_14.
10
Automated generation of genome-scale metabolic draft reconstructions based on KEGG.
BMC Bioinformatics. 2018 Dec 4;19(1):467. doi: 10.1186/s12859-018-2472-z.

引用本文的文献

1
Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.
NPJ Biofilms Microbiomes. 2025 Sep 9;11(1):183. doi: 10.1038/s41522-025-00823-6.
2
From flux analysis to self contained cellular models.
Front Syst Biol. 2025 Aug 22;5:1546072. doi: 10.3389/fsysb.2025.1546072. eCollection 2025.
4
5
Mapping out the gut microbiota-dependent trimethylamine N-oxide super pathway for systems biology applications.
Front Syst Biol. 2023 Mar 8;3:1074749. doi: 10.3389/fsysb.2023.1074749. eCollection 2023.
6
Transporter annotations are holding up progress in metabolic modeling.
Front Syst Biol. 2024 Jul 24;4:1394084. doi: 10.3389/fsysb.2024.1394084. eCollection 2024.
7
Improvement in the prediction power of an astrocyte genome-scale metabolic model using multi-omic data.
Front Syst Biol. 2025 Jan 3;4:1500710. doi: 10.3389/fsysb.2024.1500710. eCollection 2024.
9
ThermOptCobra: Thermodynamically optimal construction and analysis of metabolic networks for reliable phenotype predictions.
iScience. 2025 Jun 26;28(8):113005. doi: 10.1016/j.isci.2025.113005. eCollection 2025 Aug 15.

本文引用的文献

1
Recon3D enables a three-dimensional view of gene variation in human metabolism.
Nat Biotechnol. 2018 Mar;36(3):272-281. doi: 10.1038/nbt.4072. Epub 2018 Feb 19.
3
An in-silico approach to predict and exploit synthetic lethality in cancer metabolism.
Nat Commun. 2017 Sep 6;8(1):459. doi: 10.1038/s41467-017-00555-y.
4
MINERVA-a platform for visualization and curation of molecular interaction networks.
NPJ Syst Biol Appl. 2016 Sep 22;2:16020. doi: 10.1038/npjsba.2016.20. eCollection 2016.
5
Model-based dietary optimization for late-stage, levodopa-treated, Parkinson's disease patients.
NPJ Syst Biol Appl. 2016 Jun 16;2:16013. doi: 10.1038/npjsba.2016.13. eCollection 2016.
6
Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line.
Cell Syst. 2017 May 24;4(5):530-542.e6. doi: 10.1016/j.cels.2017.04.009.
7
DistributedFBA.jl: high-level, high-performance flux balance analysis in Julia.
Bioinformatics. 2017 May 1;33(9):1421-1423. doi: 10.1093/bioinformatics/btw838.
8
From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.
PLoS Comput Biol. 2017 Apr 13;13(4):e1005409. doi: 10.1371/journal.pcbi.1005409. eCollection 2017 Apr.
10
A Systematic Evaluation of Methods for Tailoring Genome-Scale Metabolic Models.
Cell Syst. 2017 Mar 22;4(3):318-329.e6. doi: 10.1016/j.cels.2017.01.010. Epub 2017 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验