Suppr超能文献

一种通过计算机模拟方法预测和利用癌症代谢中的合成致死性。

An in-silico approach to predict and exploit synthetic lethality in cancer metabolism.

作者信息

Apaolaza Iñigo, San José-Eneriz Edurne, Tobalina Luis, Miranda Estíbaliz, Garate Leire, Agirre Xabier, Prósper Felipe, Planes Francisco J

机构信息

CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.

Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain.

出版信息

Nat Commun. 2017 Sep 6;8(1):459. doi: 10.1038/s41467-017-00555-y.

Abstract

Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the concept of genetic minimal cut sets and gene expression data, demonstrating a superior performance to previous approaches predicting metabolic vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in multiple myeloma. We present a computational and experimental study of the effect of RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available genome-scale loss-of-function screens, a possible mechanism by which the inhibition of RRM1 is effective in cancer is established. Overall, our approach shows promising results and lays the foundation to build a novel family of algorithms to target metabolism in cancer.Exploiting synthetic lethality is a promising approach for cancer therapy. Here, the authors present an approach to identifying such interactions by finding genetic minimal cut sets (gMCSs) that block cancer proliferation, and apply it to study the lethality of RRM1 inhibition in multiple myeloma.

摘要

合成致死是癌症研究中一个很有前景的概念,可能为开发更有效、更具选择性的治疗方法开辟新的可能性。在此,我们提出一种计算方法来预测和利用癌症代谢中的合成致死。我们的方法依赖于遗传最小割集的概念和基因表达数据,在预测癌症代谢脆弱性方面表现优于以往的方法。我们的遗传最小割集计算框架用于评估多发性骨髓瘤中核糖核苷酸还原酶催化亚基M1(RRM1)抑制的致死性。我们对RRM1抑制在四种多发性骨髓瘤细胞系中的作用进行了计算和实验研究。此外,利用公开可用的全基因组功能丧失筛选,确定了RRM1抑制在癌症中有效的一种可能机制。总体而言,我们的方法显示出有前景的结果,并为构建针对癌症代谢的新型算法家族奠定了基础。利用合成致死是一种很有前景的癌症治疗方法。在此,作者提出了一种通过寻找阻碍癌症增殖的遗传最小割集(gMCSs)来识别此类相互作用的方法,并将其应用于研究多发性骨髓瘤中RRM1抑制的致死性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d3a/5587678/4eb6d52616b7/41467_2017_555_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验