Suppr超能文献

肿瘤遗传改变和免疫微环境特征促使骨髓增生异常综合征逃逸和进展。

Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression.

机构信息

Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Arnadas s/n, 18014, Granada, Spain.

Programa de doctorado en Biomedicina, Universidad de Granada, Granada, Spain.

出版信息

Cancer Immunol Immunother. 2019 Dec;68(12):2015-2027. doi: 10.1007/s00262-019-02420-x. Epub 2019 Nov 8.

Abstract

The transformation and progression of myelodysplastic syndromes (MDS) to secondary acute myeloid leukemia (sAML) involve genetic, epigenetic, and microenvironmental factors. Driver mutations have emerged as valuable markers for defining risk groups and as candidates for targeted treatment approaches in MDS. It is also evident that the risk of transformation to sAML is increased by evasion of adaptive immune surveillance. This study was designed to explore the immune microenvironment, immunogenic tumor-intrinsic mechanisms (HLA and PD-L1 expression), and tumor genetic features (somatic mutations and altered karyotypes) in MDS patients and to determine their influence on the progression of the disease. We detected major alterations of the immune microenvironment in MDS patients, with a reduced count of CD4 T cells, a more frequent presence of markers related to T cell exhaustion, a more frequent presence of myeloid-derived suppressor cells (MDSCs), and changes in the functional phenotype of NK cells. HLA Class I (HLA-I) expression was normally expressed in CD34 blasts and during myeloid differentiation. Only two out of thirty-six patients with homozygosity for HLA-C groups acquired complete copy-neutral loss of heterozygosity in the HLA region. PD-L1 expression on the leukemic clone was also increased in MDS patients. Finally, no interplay was observed between the anti-tumor immune microenvironment and mutational genomic features. In summary, extrinsic and intrinsic immunological factors might severely impair immune surveillance and contribute to clonal immune escape. Genomic alterations appear to make an independent contribution to the clonal evolution and progression of MDS.

摘要

骨髓增生异常综合征(MDS)向继发性急性髓系白血病(sAML)的转化和进展涉及遗传、表观遗传和微环境因素。驱动突变已成为定义风险组的有价值标志物,并成为 MDS 靶向治疗方法的候选物。显然,逃避适应性免疫监视会增加转化为 sAML 的风险。本研究旨在探讨 MDS 患者的免疫微环境、免疫原性肿瘤内在机制(HLA 和 PD-L1 表达)和肿瘤遗传特征(体细胞突变和改变的核型),并确定它们对疾病进展的影响。我们检测到 MDS 患者的免疫微环境发生了重大改变,CD4 T 细胞计数减少,与 T 细胞耗竭相关的标志物更频繁出现,髓源性抑制细胞(MDSCs)更频繁出现,NK 细胞的功能表型发生改变。CD34 blasts 和髓系分化过程中正常表达 HLA Ⅰ类(HLA-I)。只有 36 名 HLA-C 组纯合子患者中的 2 名在 HLA 区域获得了完全的拷贝中性杂合性丢失。MDS 患者白血病克隆上的 PD-L1 表达也增加。最后,抗肿瘤免疫微环境和突变基因组特征之间没有观察到相互作用。总之,外在和内在免疫因素可能严重损害免疫监视,并导致克隆免疫逃逸。基因组改变似乎对 MDS 的克隆进化和进展有独立的贡献。

相似文献

1
Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression.
Cancer Immunol Immunother. 2019 Dec;68(12):2015-2027. doi: 10.1007/s00262-019-02420-x. Epub 2019 Nov 8.
2
TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype.
Blood. 2020 Dec 10;136(24):2812-2823. doi: 10.1182/blood.2020006158.
4
Novel combinations to improve hematopoiesis in myelodysplastic syndrome.
Stem Cell Res Ther. 2020 Mar 20;11(1):132. doi: 10.1186/s13287-020-01647-1.
6
[Genomic aberrations in myelodysplastic syndromes and related disorders].
Rinsho Ketsueki. 2019;60(6):600-609. doi: 10.11406/rinketsu.60.600.
10
Prognostic impact of the bone marrow tumor microenvironment, HLA-I and HLA-Ib expression in MDS and CMML progression to sAML.
Oncoimmunology. 2024 Mar 6;13(1):2323212. doi: 10.1080/2162402X.2024.2323212. eCollection 2024.

引用本文的文献

1
Advances in the study of TIM3 in myelodysplastic syndrome.
Front Immunol. 2025 Aug 19;16:1647401. doi: 10.3389/fimmu.2025.1647401. eCollection 2025.
2
Characterization and Clinical Implications of p53 Dysfunction in Patients With Myelodysplastic Syndromes.
J Clin Oncol. 2025 Jun 20;43(18):2069-2083. doi: 10.1200/JCO-24-02394. Epub 2025 May 2.
3
Advances in the role of NK cells in MDS immune dysfunction and antitumor research.
Front Immunol. 2025 Mar 4;16:1511616. doi: 10.3389/fimmu.2025.1511616. eCollection 2025.
6
Immune-monitoring of myelodysplastic neoplasms: Recommendations from the i4MDS consortium.
Hemasphere. 2024 May 15;8(5):e64. doi: 10.1002/hem3.64. eCollection 2024 May.
7
Recent Advances towards the Understanding of Secondary Acute Myeloid Leukemia Progression.
Life (Basel). 2024 Feb 27;14(3):309. doi: 10.3390/life14030309.
8
The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia.
Cell Commun Signal. 2024 Jan 22;22(1):59. doi: 10.1186/s12964-023-01428-2.
9
A Mendelian randomization study on the causal association of circulating cytokines with colorectal cancer.
PLoS One. 2023 Dec 14;18(12):e0296017. doi: 10.1371/journal.pone.0296017. eCollection 2023.
10
CircZBTB46 predicts poor prognosis and promotes disease progression of myelodysplastic syndromes and acute myeloid leukemia.
Clin Exp Med. 2023 Dec;23(8):4649-4664. doi: 10.1007/s10238-023-01243-6. Epub 2023 Nov 6.

本文引用的文献

1
Neoantigen-directed immune escape in lung cancer evolution.
Nature. 2019 Mar;567(7749):479-485. doi: 10.1038/s41586-019-1032-7. Epub 2019 Mar 20.
2
Genomic loss of HLA alleles may affect the clinical outcome in low-risk myelodysplastic syndrome patients.
Oncotarget. 2018 Dec 11;9(97):36929-36944. doi: 10.18632/oncotarget.26405.
3
Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes.
Curr Hematol Malig Rep. 2018 Aug;13(4):244-255. doi: 10.1007/s11899-018-0463-9.
4
Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies.
Crit Rev Oncol Hematol. 2018 Feb;122:123-132. doi: 10.1016/j.critrevonc.2017.12.013. Epub 2018 Jan 3.
5
HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape.
Oncotarget. 2017 Dec 19;9(3):4120-4133. doi: 10.18632/oncotarget.23469. eCollection 2018 Jan 9.
6
Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.
Cell. 2017 Nov 30;171(6):1259-1271.e11. doi: 10.1016/j.cell.2017.10.001. Epub 2017 Oct 26.
7
CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8 T Cells.
Cancer Res. 2018 Jan 1;78(1):115-128. doi: 10.1158/0008-5472.CAN-16-2684. Epub 2017 Oct 24.
9
PD-1/PD-L1 inhibitors in haematological malignancies: update 2017.
Immunology. 2017 Nov;152(3):357-371. doi: 10.1111/imm.12788. Epub 2017 Aug 4.
10
Recurrent Cytogenetic Abnormalities in Myelodysplastic Syndromes.
Methods Mol Biol. 2017;1541:209-222. doi: 10.1007/978-1-4939-6703-2_18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验