Suppr超能文献

肾素细胞、肾脏和高血压。

Renin Cells, the Kidney, and Hypertension.

机构信息

Departments of Pediatrics and Biology, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia.

出版信息

Circ Res. 2021 Apr 2;128(7):887-907. doi: 10.1161/CIRCRESAHA.121.318064. Epub 2021 Apr 1.

Abstract

Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.

摘要

肾素细胞对于生存至关重要,它们在进化过程中不断完善,以确保正常的发育,并抵御各种体内平衡威胁。在胚胎期和出生后的早期,它们是祖细胞,参与肾动脉树的形态发生。在成年期,它们能够再生受损的肾小球,控制血压、液体电解质平衡、组织灌注,从而为细胞输送氧气和营养物质。在整个生命周期中,肾素细胞的后代保持着可塑性或记忆,以在体内平衡受到威胁时恢复肾素表型。为了执行所有这些功能并保持健康,肾素细胞必须调节其身份和命运。在这里,我们回顾了控制肾素细胞分化和命运的主要机制、控制肾素表型记忆的染色质事件,以及决定其可塑性的主要途径。我们还研究了慢性刺激肾素细胞如何改变它们的命运,导致肾内动脉和小动脉严重且同心性肥大的发展。最后,我们提供了肾素细胞命运发生其他变化的例子,这些变化同样导致严重的肾脏疾病。

相似文献

1
Renin Cells, the Kidney, and Hypertension.
Circ Res. 2021 Apr 2;128(7):887-907. doi: 10.1161/CIRCRESAHA.121.318064. Epub 2021 Apr 1.
2
Renin cells in homeostasis, regeneration and immune defence mechanisms.
Nat Rev Nephrol. 2018 Apr;14(4):231-245. doi: 10.1038/nrneph.2017.186. Epub 2018 Jan 30.
3
Plasticity of Renin Cells in the Kidney Vasculature.
Curr Hypertens Rep. 2017 Feb;19(2):14. doi: 10.1007/s11906-017-0711-8.
4
Deciphering the Identity of Renin Cells in Health and Disease.
Trends Mol Med. 2021 Mar;27(3):280-292. doi: 10.1016/j.molmed.2020.10.003. Epub 2020 Nov 5.
5
Fate and plasticity of renin precursors in development and disease.
Pediatr Nephrol. 2014 Apr;29(4):721-6. doi: 10.1007/s00467-013-2688-0. Epub 2013 Dec 15.
6
Renin Cells, From Vascular Development to Blood Pressure Sensing.
Hypertension. 2023 Aug;80(8):1580-1589. doi: 10.1161/HYPERTENSIONAHA.123.20577. Epub 2023 Jun 14.
8
Role of the intrarenal renin-angiotensin system in the control of renal function.
Circ Res. 1981 Feb;48(2):157-67. doi: 10.1161/01.res.48.2.157.
9
Juxtaglomerular Cell Phenotypic Plasticity.
High Blood Press Cardiovasc Prev. 2017 Sep;24(3):231-242. doi: 10.1007/s40292-017-0212-5. Epub 2017 May 19.
10
Phylogeny and ontogeny of the renin-angiotensin system: Current view and perspectives.
Comp Biochem Physiol A Mol Integr Physiol. 2021 Apr;254:110879. doi: 10.1016/j.cbpa.2020.110879. Epub 2020 Dec 29.

引用本文的文献

1
3
Gating Mechanism for Biased Agonism at Angiotensin II Type 1 Receptors.
Molecules. 2025 May 30;30(11):2399. doi: 10.3390/molecules30112399.
7
Targeting inerleukin-6 for renoprotection.
Front Immunol. 2024 Dec 11;15:1502299. doi: 10.3389/fimmu.2024.1502299. eCollection 2024.
8
Tcf21 as a founder transcription factor in specifying Foxd1 cells to the juxtaglomerular cell lineage.
Am J Physiol Renal Physiol. 2025 Jan 1;328(1):F121-F130. doi: 10.1152/ajprenal.00235.2024. Epub 2024 Nov 26.
10
Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy.
Hypertens Res. 2024 Oct;47(10):2786-2799. doi: 10.1038/s41440-024-01820-6. Epub 2024 Aug 5.

本文引用的文献

1
A primitive type of renin-expressing lymphocyte protects the organism against infections.
Sci Rep. 2021 Mar 31;11(1):7251. doi: 10.1038/s41598-021-86629-w.
2
Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions.
EBioMedicine. 2021 Feb;64:103209. doi: 10.1016/j.ebiom.2021.103209. Epub 2021 Jan 25.
3
Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study.
J Am Soc Nephrol. 2021 Feb;32(2):424-435. doi: 10.1681/ASN.2020050682. Epub 2020 Dec 28.
4
Arterialization requires the timely suppression of cell growth.
Nature. 2021 Jan;589(7842):437-441. doi: 10.1038/s41586-020-3018-x. Epub 2020 Dec 9.
5
Macrophage secretion of miR-106b-5p causes renin-dependent hypertension.
Nat Commun. 2020 Sep 23;11(1):4798. doi: 10.1038/s41467-020-18538-x.
6
Beyond the Paradigm: Novel Functions of Renin-Producing Cells.
Rev Physiol Biochem Pharmacol. 2020;177:53-81. doi: 10.1007/112_2020_27.
7
Ctcf is required for renin expression and maintenance of the structural integrity of the kidney.
Clin Sci (Lond). 2020 Jul 17;134(13):1763-1774. doi: 10.1042/CS20200184.
8
Renin-Expressing Cells Require β1-Integrin for Survival and for Development and Maintenance of the Renal Vasculature.
Hypertension. 2020 Aug;76(2):458-467. doi: 10.1161/HYPERTENSIONAHA.120.14959. Epub 2020 Jun 29.
9
Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis.
Kidney Int. 2020 Sep;98(3):630-644. doi: 10.1016/j.kint.2020.04.041. Epub 2020 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验