Suppr超能文献

用于识别新冠病毒药物再利用机会的网络医学框架。

Network medicine framework for identifying drug-repurposing opportunities for COVID-19.

机构信息

Network Science Institute, Northeastern University, Boston, MA 02115.

Department of Physics, Northeastern University, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2025581118.

Abstract

The COVID-19 pandemic has highlighted the need to quickly and reliably prioritize clinically approved compounds for their potential effectiveness for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs experimentally screened in VeroE6 cells, as well as the list of drugs in clinical trials that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that no single predictive algorithm offers consistently reliable outcomes across all datasets and metrics. This outcome prompted us to develop a multimodal technology that fuses the predictions of all algorithms, finding that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We screened in human cells the top-ranked drugs, obtaining a 62% success rate, in contrast to the 0.8% hit rate of nonguided screenings. Of the six drugs that reduced viral infection, four could be directly repurposed to treat COVID-19, proposing novel treatments for COVID-19. We also found that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these network drugs rely on network-based mechanisms that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

摘要

COVID-19 大流行凸显了需要快速、可靠地确定经临床批准的化合物在严重急性呼吸系统综合征冠状病毒 2 (SARS-CoV-2) 感染方面的潜在有效性,并优先考虑这些化合物。在这里,我们部署了依赖人工智能、网络扩散和网络接近度的算法,要求它们分别对 6340 种药物进行排名,以评估它们对 SARS-CoV-2 的预期疗效。为了测试预测结果,我们使用了 918 种在 VeroE6 细胞中进行实验筛选的药物作为真实数据,以及在临床试验中筛选的药物清单,这些药物反映了医学界对具有潜在 COVID-19 疗效的药物的评估。我们发现,没有任何单一的预测算法在所有数据集和指标上都能提供一致可靠的结果。这一结果促使我们开发了一种多模态技术,该技术融合了所有算法的预测结果,发现不同预测方法的共识始终优于最佳个体管道的性能。我们在人类细胞中筛选排名靠前的药物,获得了 62%的成功率,而未经指导的筛选成功率仅为 0.8%。在六种能降低病毒感染的药物中,有四种可直接用于治疗 COVID-19,为 COVID-19 提供了新的治疗方法。我们还发现,在 77 种成功降低病毒感染的药物中,有 76 种药物不能与 SARS-CoV-2 靶向的蛋白质结合,这表明这些网络药物依赖于不能通过基于对接的策略识别的基于网络的机制。这些进展为确定未来病原体和因新药开发成本高、时间长而未得到充分治疗的被忽视疾病的可再利用药物提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e722/8126852/0e8dadaf0506/pnas.2025581118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验