Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada.
Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada.
J Bacteriol. 2022 Jan 18;204(1):e0029721. doi: 10.1128/JB.00297-21. Epub 2021 Nov 1.
Pseudomonas aeruginosa, an opportunistic bacterial pathogen, can synthesize and catabolize several small cationic molecules known as polyamines. In several clades of bacteria, polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, l-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or occurs through a metabolic derivative. Here, we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa. Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that l-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation but did so by a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and l-arginine induced a significant increase in the intracellular level of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor, arginine, promote biofilm and c-di-GMP synthesis in P. aeruginosa. Biofilm formation allows bacteria to physically attach to a surface, confer tolerance to antimicrobial agents, and promote resistance to host immune responses. As a result, the regulation of biofilm formation is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switch that favors chronic infection.
铜绿假单胞菌是一种机会性病原体细菌,能够合成和分解几种被称为聚胺的小阳离子分子。在几个细菌进化枝中,聚胺调节生物膜形成,这是一种生活方式转换过程,使细菌能够抵抗环境压力。聚胺腐胺及其生物合成前体 l-精氨酸和胍丁胺促进铜绿假单胞菌的生物膜形成。然而,目前尚不清楚这种效应是聚胺的直接作用还是通过代谢衍生物发生的。在这里,我们使用遗传方法证明,腐胺的积累,无论是通过破坏 spermidine 生物合成途径还是 catabolic putrescine aminotransferase 途径,都能促进铜绿假单胞菌的生物膜形成。与这一观察结果一致,外源性腐胺能强烈诱导铜绿假单胞菌的生物膜形成,这依赖于腐胺的摄取和生物合成途径。此外,我们还表明,腐胺的生物合成前体 l-精氨酸也能促进生物膜的形成,但这种作用不是通过腐胺或胍丁胺的转化来实现的。我们发现,腐胺和 l-精氨酸都能显著增加细菌第二信使 bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) 的细胞内水平,c-di-GMP 广泛存在于 中,能上调生物膜的形成。总的来说,这些数据表明,腐胺及其代谢前体精氨酸促进铜绿假单胞菌的生物膜和 c-di-GMP 合成。生物膜的形成使细菌能够物理附着在表面上,耐受抗菌剂,并促进对宿主免疫反应的抵抗力。因此,生物膜形成的调节通常对细菌病原体建立慢性感染至关重要。细菌生物膜促进的一个主要机制是分子 c-di-GMP,它促进生物膜的形成。c-di-GMP 的水平受到细菌酶的严格调节。在这项研究中,我们发现,腐胺,一种普遍存在于真核细胞中的小分子,能强烈增强铜绿假单胞菌的生物膜和 c-di-GMP。我们提出,铜绿假单胞菌可能将腐胺视为一种宿主相关信号,触发有利于慢性感染的生活方式转变。