Suppr超能文献

头颈部鳞状细胞癌中LINC01615的综合分析:通过机器学习和实验验证鉴定的枢纽生物标志物

Comprehensive Analysis of LINC01615 in Head and Neck Squamous Cell Carcinoma: A Hub Biomarker Identified by Machine Learning and Experimental Validation.

作者信息

Yin Xiaoyan, Wang Jingmiao, Bian Yanrui, Jia Qiaojing, Shen Ziyi, Zhang Haizhong

机构信息

Department of Otolaryngology, Head and Neck Surgery, The Second Hospital Of Hebei Medical University, Shijiazhuang, China.

出版信息

J Oncol. 2022 Jun 27;2022:5039962. doi: 10.1155/2022/5039962. eCollection 2022.

Abstract

BACKGROUND

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, but in clinical practice, the lack of precise biomarkers often results in an advanced diagnosis. Hence, it is crucial to explore novel biomarkers to improve the clinical outcome of HNSCC patients.

METHODS

We downloaded RNA-seq data consisting of 502 HNSCC tissues and 44 normal tissues from the TCGA database, and lncRNA genomic sequence information was downloaded from the GENECODE database for annotating lncRNA expression profiles. We used Cox regression analysis to screen prognostic lncRNAs, the threshold as HR >1 and value <0.05. Subsequently, three survival outcomes (overall survival, progress-free interval, and disease-specific survival)-related lncRNAs overlapped to get the common lncRNAs. The hub biomarker was identified using LASSO and random forest models. Subsequently, we used a variety of statistical methods to validate the prognostic ability of the hub marker. In addition, Spearman correlation analysis between the hub marker expression and genomic heterogeneity was conducted, such as instability (MSI), homologous recombination deficiency (HRD), and tumor mutational burden (TMB). Finally, we used enrichment analysis, ssGSEA, and ESTIMATE algorithms to explore the changes in the underlying immune-related pathway and function. Finally, the MTT assay and transwell assay were performed to determine the effect of LINC01615 silencing on tumor cell proliferation, invasion, and migration.

RESULTS

Cox regression analysis revealed 133 lncRNAs with multiple prognostic significance. The machine learning algorithm screened out the hub lncRNA with the highest importance in the RF model: LINC01615. Clinical correlation analysis revealed that the LINC01615 increased with increasing the T stage, N stage, pathology grade, and clinical stage. LINC01615 could be used as a predictor of HNSCC prognosis validating by a variety of statistical methods. Subsequently, when clinical indicators were combined with the LINC01615 expression, the visualization model (nomogram) was more applicable to clinical practice. Finally, immune algorithms indicated that LINC01615 may be involved in the regulation of lymphocyte recruitment and immunological infiltration in HNSCC, and the LINC01615 expression represented genomic heterogeneity in pan-cancer. Functionally, silencing of LINC01615 suppresses cell proliferation, invasion, and migration in HEP-2 and TU212 cells.

CONCLUSION

LINC01615 may play an important role in the prostromal cell enrichment and immunosuppressive state and serve as a prognostic biomarker in HNSCC.

摘要

背景

头颈部鳞状细胞癌(HNSCC)是最常见的癌症之一,但在临床实践中,缺乏精确的生物标志物常常导致诊断延迟。因此,探索新的生物标志物以改善HNSCC患者的临床结局至关重要。

方法

我们从TCGA数据库下载了包含502个HNSCC组织和44个正常组织的RNA测序数据,并从GENECODE数据库下载lncRNA基因组序列信息以注释lncRNA表达谱。我们使用Cox回归分析筛选预后lncRNAs,阈值设定为HR>1且P值<0.05。随后,将与总生存、无进展生存期和疾病特异性生存这三种生存结局相关的lncRNAs进行重叠,以获得共同的lncRNAs。使用LASSO和随机森林模型鉴定核心生物标志物。随后,我们使用多种统计方法验证核心标志物的预后能力。此外,对核心标志物表达与基因组异质性(如微卫星不稳定性(MSI)、同源重组缺陷(HRD)和肿瘤突变负荷(TMB))进行Spearman相关性分析。最后,我们使用富集分析、单样本基因集富集分析(ssGSEA)和ESTIMATE算法来探索潜在免疫相关通路和功能的变化。最后,进行MTT试验和Transwell试验以确定LINC01615沉默对肿瘤细胞增殖、侵袭和迁移的影响。

结果

Cox回归分析揭示了133个具有多重预后意义的lncRNAs。机器学习算法筛选出RF模型中重要性最高的核心lncRNA:LINC01615。临床相关性分析显示,LINC01615随着T分期、N分期、病理分级和临床分期的增加而升高。LINC01615可作为HNSCC预后的预测指标,多种统计方法验证了这一点。随后,当将临床指标与LINC01615表达相结合时,可视化模型(列线图)更适用于临床实践。最后,免疫算法表明LINC01615可能参与HNSCC中淋巴细胞募集和免疫浸润的调节,并且LINC01615表达代表泛癌中的基因组异质性。在功能上,LINC01615沉默可抑制HEP-2和TU212细胞的增殖、侵袭和迁移。

结论

LINC01615可能在基质细胞富集和免疫抑制状态中起重要作用,并可作为HNSCC的预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/476e/9252709/cd55cdfa9c4f/JO2022-5039962.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验