Suppr超能文献

用于解决NanoString GeoMx数字空间分析数据中系统偏差的替代标准化和分析流程。

Alternative normalization and analysis pipeline to address systematic bias in NanoString GeoMx Digital Spatial Profiling data.

作者信息

van Hijfte Levi, Geurts Marjolein, Vallentgoed Wies R, Eilers Paul H C, Sillevis Smitt Peter A E, Debets Reno, French Pim J

机构信息

Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Center, 3015 GD Rotterdam, the Netherlands.

Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC University Medical Center, 3015 GD Rotterdam, the Netherlands.

出版信息

iScience. 2022 Dec 9;26(1):105760. doi: 10.1016/j.isci.2022.105760. eCollection 2023 Jan 20.

Abstract

Spatial transcriptomics is a novel technique that provides RNA-expression data with tissue-contextual annotations. Quality assessments of such techniques using end-user generated data are often lacking. Here, we evaluated data from the NanoString GeoMx Digital Spatial Profiling (DSP) platform and standard processing pipelines. We queried 72 ROIs from 12 glioma samples, performed replicate experiments of eight samples for validation, and evaluated five external datasets. The data consistently showed vastly different signal intensities between samples and experimental conditions that resulted in biased analysis. We evaluated the performance of alternative normalization strategies and show that quantile normalization can adequately address the technical issues related to the differences in data distributions. Compared to bulk RNA sequencing, NanoString DSP data show a limited dynamic range which underestimates differences between conditions. Weighted gene co-expression network analysis allowed extraction of gene signatures associated with tissue phenotypes from ROI annotations. Nanostring GeoMx DSP data therefore require alternative normalization methods and analysis pipelines.

摘要

空间转录组学是一种能够提供带有组织背景注释的RNA表达数据的新技术。目前常常缺乏使用终端用户生成的数据对这类技术进行的质量评估。在此,我们评估了来自NanoString GeoMx数字空间分析(DSP)平台和标准处理流程的数据。我们从12个胶质瘤样本中查询了72个感兴趣区域(ROI),对8个样本进行了重复实验以作验证,并评估了5个外部数据集。数据始终显示样本和实验条件之间的信号强度差异极大,从而导致分析出现偏差。我们评估了替代归一化策略的性能,并表明分位数归一化能够充分解决与数据分布差异相关的技术问题。与批量RNA测序相比,NanoString DSP数据显示出有限的动态范围,这会低估不同条件之间的差异。加权基因共表达网络分析能够从ROI注释中提取与组织表型相关的基因特征。因此,NanoString GeoMx DSP数据需要替代归一化方法和分析流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/762c/9800292/f4554f0ac72c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验