Suppr超能文献

基于 XGBoost-SHAP 的阿尔茨海默病可解释诊断框架。

XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease.

机构信息

Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, P.R. China.

Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China.

出版信息

BMC Med Inform Decis Mak. 2023 Jul 25;23(1):137. doi: 10.1186/s12911-023-02238-9.

Abstract

BACKGROUND

Due to the class imbalance issue faced when Alzheimer's disease (AD) develops from normal cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis performance. We aimed to construct an interpretable framework, extreme gradient boosting-Shapley additive explanations (XGBoost-SHAP), to handle the imbalance among different AD progression statuses at the algorithmic level. We also sought to achieve multiclassification of NC, MCI, and AD.

METHODS

We obtained patient data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including clinical information, neuropsychological test results, neuroimaging-derived biomarkers, and APOE-ε4 gene statuses. First, three feature selection algorithms were applied, and they were then included in the XGBoost algorithm. Due to the imbalance among the three classes, we changed the sample weight distribution to achieve multiclassification of NC, MCI, and AD. Then, the SHAP method was linked to XGBoost to form an interpretable framework. This framework utilized attribution ideas that quantified the impacts of model predictions into numerical values and analysed them based on their directions and sizes. Subsequently, the top 10 features (optimal subset) were used to simplify the clinical decision-making process, and their performance was compared with that of a random forest (RF), Bagging, AdaBoost, and a naive Bayes (NB) classifier. Finally, the National Alzheimer's Coordinating Center (NACC) dataset was employed to assess the impact path consistency of the features within the optimal subset.

RESULTS

Compared to the RF, Bagging, AdaBoost, NB and XGBoost (unweighted), the interpretable framework had higher classification performance with accuracy improvements of 0.74%, 0.74%, 1.46%, 13.18%, and 0.83%, respectively. The framework achieved high sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy (87.57%/80.52%), area under the receiver operating characteristic curve (AUC) (0.91/0.88), positive clinical utility index (0.71/0.56), and negative clinical utility index (0.75/0.68) on the ADNI and NACC datasets, respectively. In the ADNI dataset, the top 10 features were found to have varying associations with the risk of AD onset based on their SHAP values. Specifically, the higher SHAP values of CDRSB, ADAS13, ADAS11, ventricle volume, ADASQ4, and FAQ were associated with higher risks of AD onset. Conversely, the higher SHAP values of LDELTOTAL, mPACCdigit, RAVLT_immediate, and MMSE were associated with lower risks of AD onset. Similar results were found for the NACC dataset.

CONCLUSIONS

The proposed interpretable framework contributes to achieving excellent performance in imbalanced AD multiclassification tasks and provides scientific guidance (optimal subset) for clinical decision-making, thereby facilitating disease management and offering new research ideas for optimizing AD prevention and treatment programs.

摘要

背景

由于阿尔茨海默病(AD)从正常认知(NC)发展到轻度认知障碍(MCI)时面临类别不平衡问题,目前的临床实践在使用机器学习(ML)辅助 AD 诊断方面面临挑战。这导致诊断性能较低。我们旨在构建一个可解释的框架,即极端梯度提升-Shapley 加性解释(XGBoost-SHAP),以在算法层面解决不同 AD 进展状态之间的不平衡问题。我们还旨在实现 NC、MCI 和 AD 的多分类。

方法

我们从阿尔茨海默病神经影像学倡议(ADNI)数据库中获取患者数据,包括临床信息、神经心理学测试结果、神经影像学衍生的生物标志物和 APOE-ε4 基因状态。首先,应用了三种特征选择算法,然后将它们包含在 XGBoost 算法中。由于这三个类别的不平衡,我们改变了样本权重分布,以实现 NC、MCI 和 AD 的多分类。然后,将 SHAP 方法与 XGBoost 结合,形成一个可解释的框架。该框架利用归因思想,将模型预测的影响量化为数值,并根据其方向和大小进行分析。随后,使用前 10 个特征(最优子集)简化临床决策过程,并将其性能与随机森林(RF)、Bagging、AdaBoost 和朴素贝叶斯(NB)分类器进行比较。最后,使用国家阿尔茨海默病协调中心(NACC)数据集评估最优子集中特征的影响路径一致性。

结果

与 RF、Bagging、AdaBoost、NB 和 XGBoost(未加权)相比,可解释框架的分类性能更高,准确性分别提高了 0.74%、0.74%、1.46%、13.18%和 0.83%。该框架在 ADNI 和 NACC 数据集上分别具有较高的灵敏度(81.21%/74.85%)、特异性(92.18%/89.86%)、准确性(87.57%/80.52%)、接收者操作特征曲线下面积(AUC)(0.91/0.88)、阳性临床效用指数(0.71/0.56)和阴性临床效用指数(0.75/0.68)。在 ADNI 数据集上,根据 SHAP 值,发现前 10 个特征与 AD 发病风险存在不同的关联。具体来说,CDRSB、ADAS13、ADAS11、脑室体积、ADASQ4 和 FAQ 的 SHAP 值越高,AD 发病风险越高。相反,LDELTOTAL、mPACCdigit、RAVLT_immediate 和 MMSE 的 SHAP 值越高,AD 发病风险越低。在 NACC 数据集上也得到了类似的结果。

结论

所提出的可解释框架有助于在不平衡的 AD 多分类任务中实现优异的性能,并为临床决策提供科学指导(最优子集),从而有助于疾病管理,并为优化 AD 预防和治疗方案提供新的研究思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf2/10369804/63435d39393e/12911_2023_2238_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验