Suppr超能文献

脆性固体中的阈值损伤机制及其对先进技术的影响。

Threshold damage mechanisms in brittle solids and their impact on advanced technologies.

作者信息

Lawn Brian R, Huang Han, Lu Mingyuan, Borrero-López Óscar, Zhang Yu

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, MD 20899, USA.

School of Mechanical and Mining Engineering, The University of Queensland, QLD 4072, Australia.

出版信息

Acta Mater. 2022 Jun 15;232. doi: 10.1016/j.actamat.2022.117921. Epub 2022 Apr 10.

Abstract

Threshold damage mechanisms in brittle covalent-ionic solids are outlined. Fracture and deformation modes are analyzed in terms of classical contact mechanics. Distinctions are made between brittle, ductile and quasiplastic mechanisms in both axial and translational contact. Special attention is devoted to the relatively unexplored subthreshold region where macrofracture is largely suppressed, a region of increasing relevance in the relentless move toward ever smaller devices and precision shaping technologies in the manufacturing sector. Cross-section micrographic images illustrate the fundamental nature of shear events within the hardness deformation zone responsible for crack initiation and propagation. Basic analytical relations for the strengths of surfaces with contact-induced damage in the postthreshold and subthreshold regions are presented, with emphasis on concept rather than fine detail. Strength data for a prototypical brittle material after sharp-indenter damage are presented to highlight the vital role of microstructure in determining transitions between brittle and quasiplastic responses. Pristine defect-free solids are shown to be highly vulnerable to contact damage, even in the subthreshold region. Heterogeneous solids with granular microstructures have lower initial strengths, but are more flaw tolerant. Brittle solids are also highly susceptible to degradation by surface removal processes in wear and machining settings, to a large extent depending again on microstructure. Implications of these findings concerning advanced technological applications of covalent-ionic solids are discussed.

摘要

概述了脆性共价 - 离子固体中的阈值损伤机制。根据经典接触力学分析了断裂和变形模式。区分了轴向和横向接触中的脆性、延性和准塑性机制。特别关注相对未被探索的亚阈值区域,在该区域宏观断裂在很大程度上受到抑制,在制造业中朝着越来越小的器件和精密成型技术不断发展的过程中,该区域的相关性日益增加。横截面显微图像说明了硬度变形区内负责裂纹萌生和扩展的剪切事件的基本性质。给出了阈值后和亚阈值区域中具有接触诱导损伤的表面强度的基本分析关系,重点在于概念而非细节。给出了典型脆性材料在尖锐压头损伤后的强度数据,以突出微观结构在确定脆性和准塑性响应之间转变中的关键作用。即使在亚阈值区域,原始无缺陷固体也显示出极易受到接触损伤。具有颗粒微观结构的非均质固体初始强度较低,但更能容忍缺陷。脆性固体在磨损和加工环境中也极易受到表面去除过程的降解,这在很大程度上再次取决于微观结构。讨论了这些发现对共价 - 离子固体先进技术应用的影响。

相似文献

1
Threshold damage mechanisms in brittle solids and their impact on advanced technologies.
Acta Mater. 2022 Jun 15;232. doi: 10.1016/j.actamat.2022.117921. Epub 2022 Apr 10.
2
Micromechanics of Machining and Wear in Hard and Brittle Materials.
J Am Ceram Soc. 2021 Jan;104(1):5-22. doi: 10.1111/jace.17502. Epub 2020 Sep 27.
3
Exploring Ductility in Dental Ceramics.
J Dent Res. 2022 Nov;101(12):1467-1473. doi: 10.1177/00220345221100409. Epub 2022 Jun 10.
4
Effect of anisotropy on deformation and crack formation under the brittle removal of 6H-SiC during SPDT process.
J Adv Res. 2024 Feb;56:103-112. doi: 10.1016/j.jare.2023.04.004. Epub 2023 Apr 13.
5
Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.
Sci Rep. 2018 Mar 2;8(1):3934. doi: 10.1038/s41598-018-22329-2.
6
Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces.
Int J Fract. 2019;215(1):1-37. doi: 10.1007/s10704-018-0324-5. Epub 2018 Nov 14.
7
Mechanical characterization of dental ceramics by hertzian contacts.
J Dent Res. 1998 Apr;77(4):589-602. doi: 10.1177/00220345980770041201.
8
Athermal brittle-to-ductile transition in amorphous solids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046105. doi: 10.1103/PhysRevE.84.046105. Epub 2011 Oct 14.
10
Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP.
Ultrasonics. 2019 Aug;97:19-28. doi: 10.1016/j.ultras.2019.04.004. Epub 2019 Apr 17.

引用本文的文献

2
Effect of elastic gradients on the fracture resistance of tri-layer restorative systems.
Dent Mater. 2024 Nov;40(11):1862-1871. doi: 10.1016/j.dental.2024.08.004. Epub 2024 Aug 28.
4
Microplastic Index-How to Predict Microplastics Formation?
Polymers (Basel). 2023 May 4;15(9):2185. doi: 10.3390/polym15092185.
5
A Critical Review of Dental Lithia-Based Glass-Ceramics.
J Dent Res. 2023 Mar;102(3):245-253. doi: 10.1177/00220345221142755. Epub 2023 Jan 16.

本文引用的文献

1
Micromechanics of Machining and Wear in Hard and Brittle Materials.
J Am Ceram Soc. 2021 Jan;104(1):5-22. doi: 10.1111/jace.17502. Epub 2020 Sep 27.
2
1000 at 1000: "Indentation fracture: principles and applications", past, present and future reasons of success.
J Mater Sci. 2020;55(30):14705-14708. doi: 10.1007/s10853-020-04991-y. Epub 2020 Jul 20.
3
Wear of ceramic-based dental materials.
J Mech Behav Biomed Mater. 2019 Apr;92:144-151. doi: 10.1016/j.jmbbm.2019.01.009. Epub 2019 Jan 12.
5
A model for predicting wear rates in tooth enamel.
J Mech Behav Biomed Mater. 2014 Sep;37:226-34. doi: 10.1016/j.jmbbm.2014.05.023. Epub 2014 Jun 5.
6
Fatigue of dental ceramics.
J Dent. 2013 Dec;41(12):1135-47. doi: 10.1016/j.jdent.2013.10.007. Epub 2013 Oct 14.
7
An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers.
Nanotechnology. 2013 Jul 19;24(28):285703. doi: 10.1088/0957-4484/24/28/285703. Epub 2013 Jun 20.
8
Fracture of crystalline silicon nanopillars during electrochemical lithium insertion.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4080-5. doi: 10.1073/pnas.1201088109. Epub 2012 Feb 27.
10
Making ceramics "ductile".
Science. 1994 Feb 25;263(5150):1114-6. doi: 10.1126/science.263.5150.1114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验