Suppr超能文献

调控线粒体-核平衡的因子将线粒体代谢与 mtDNA 表达相联系。

Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.

Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Cell Biol. 2023 Nov;25(11):1575-1589. doi: 10.1038/s41556-023-01244-3. Epub 2023 Sep 28.

Abstract

Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.

摘要

线粒体氧化磷酸化(OXPHOS)复合物由核 DNA 和线粒体 DNA 编码的蛋白质组成。这些双起源酶对需要协调细胞器间基因表达的细胞提出了复杂的基因调控挑战。为了鉴定参与双起源蛋白复合物合成的基因,我们进行了基于荧光激活细胞分选的全基因组筛选,分析了线粒体和核编码的细胞色素 c 氧化酶 IV 亚基水平失衡的突变细胞。我们发现了参与 OXPHOS 生物发生的基因,包括两个未被表征的基因:PREPL 和 NME6。我们发现 PREPL 通过作用于线粒体脂质代谢和蛋白质合成的交汇点,特异性地影响细胞色素 c 氧化酶 IV 的生物发生,而 NME6 是一种未被表征的核苷二磷酸激酶,通过多种依赖其 NDPK 结构域的机制来控制 OXPHOS 的生物发生。首先,NME6 与 RCC1L 形成复合物,共同发挥核苷二磷酸激酶活性,以维持维持线粒体 RNA 丰度所必需的局部线粒体嘧啶三磷酸水平。其次,NME6 调节线粒体核糖体调节复合物的活性,改变线粒体核糖体的组装和线粒体 RNA 的假尿嘧啶化。总之,我们提出 NME6 作为细胞区室化的线粒体代谢物和线粒体基因表达之间的联系。

相似文献

1
Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression.
Nat Cell Biol. 2023 Nov;25(11):1575-1589. doi: 10.1038/s41556-023-01244-3. Epub 2023 Sep 28.
3
Mitochondrial NME6: A Paradigm Change within the NME/NDP Kinase Protein Family?
Cells. 2024 Jul 30;13(15):1278. doi: 10.3390/cells13151278.
5
Ribonucleotide synthesis by NME6 fuels mitochondrial gene expression.
EMBO J. 2023 Sep 18;42(18):e113256. doi: 10.15252/embj.2022113256. Epub 2023 Jul 13.
7
A kinetic dichotomy between mitochondrial and nuclear gene expression processes.
Mol Cell. 2024 Apr 18;84(8):1541-1555.e11. doi: 10.1016/j.molcel.2024.02.028. Epub 2024 Mar 18.
8
Mitochondrial double-stranded RNA homeostasis depends on cell-cycle progression.
Life Sci Alliance. 2024 Aug 29;7(11). doi: 10.26508/lsa.202402764. Print 2024 Nov.
9
Coordinating mitochondrial translation with assembly of the OXPHOS complexes.
Hum Mol Genet. 2024 May 22;33(R1):R47-R52. doi: 10.1093/hmg/ddae025.
10
Organization and Regulation of Mitochondrial Protein Synthesis.
Annu Rev Biochem. 2016 Jun 2;85:77-101. doi: 10.1146/annurev-biochem-060815-014334. Epub 2016 Jan 18.

引用本文的文献

1
Functions and therapeutic applications of pseudouridylation.
Nat Rev Mol Cell Biol. 2025 May 20. doi: 10.1038/s41580-025-00852-1.
2
Mitochondrial dysfunction fuels drug resistance in adult T-cell acute lymphoblastic leukemia.
J Transl Med. 2025 May 14;23(1):542. doi: 10.1186/s12967-025-06423-4.
3
Human RCC1L is involved in the maintenance of mitochondrial nucleoids and mtDNA.
Sci Rep. 2025 Apr 21;15(1):13811. doi: 10.1038/s41598-025-98397-y.
4
Mitochondrial genetics, signalling and stress responses.
Nat Cell Biol. 2025 Mar;27(3):393-407. doi: 10.1038/s41556-025-01625-w. Epub 2025 Mar 10.
6
WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkae1325.
7
Mitochondrial NME6 Influences Basic Cellular Processes in Tumor Cells In Vitro.
Int J Mol Sci. 2024 Sep 4;25(17):9580. doi: 10.3390/ijms25179580.
8
Mitochondrial double-stranded RNA homeostasis depends on cell-cycle progression.
Life Sci Alliance. 2024 Aug 29;7(11). doi: 10.26508/lsa.202402764. Print 2024 Nov.
9
Mitochondrial NME6: A Paradigm Change within the NME/NDP Kinase Protein Family?
Cells. 2024 Jul 30;13(15):1278. doi: 10.3390/cells13151278.
10
Missense variants in CMS22 patients reveal that PREPL has both enzymatic and nonenzymatic functions.
JCI Insight. 2024 Sep 10;9(17):e179276. doi: 10.1172/jci.insight.179276.

本文引用的文献

1
Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle.
Mol Cell. 2024 Jul 25;84(14):2765-2784.e16. doi: 10.1016/j.molcel.2024.06.008. Epub 2024 Jul 3.
2
Ribonucleotide synthesis by NME6 fuels mitochondrial gene expression.
EMBO J. 2023 Sep 18;42(18):e113256. doi: 10.15252/embj.2022113256. Epub 2023 Jul 13.
3
A cytosolic surveillance mechanism activates the mitochondrial UPR.
Nature. 2023 Jun;618(7966):849-854. doi: 10.1038/s41586-023-06142-0. Epub 2023 Jun 7.
4
Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution.
Nat Biotechnol. 2023 Mar;41(3):344-354. doi: 10.1038/s41587-022-01505-w. Epub 2022 Oct 27.
5
Genome-wide CRISPR screen reveals v-ATPase as a drug target to lower levels of ALS protein ataxin-2.
Cell Rep. 2022 Oct 25;41(4):111508. doi: 10.1016/j.celrep.2022.111508.
6
Principles and functions of metabolic compartmentalization.
Nat Metab. 2022 Oct;4(10):1232-1244. doi: 10.1038/s42255-022-00645-2. Epub 2022 Oct 20.
7
N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products.
Cell Rep. 2022 Aug 30;40(9):111300. doi: 10.1016/j.celrep.2022.111300. Epub 2022 Aug 15.
8
A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma.
Cancer Cell. 2022 Sep 12;40(9):957-972.e10. doi: 10.1016/j.ccell.2022.07.012. Epub 2022 Aug 18.
10
Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq.
Cell. 2022 Jul 7;185(14):2559-2575.e28. doi: 10.1016/j.cell.2022.05.013. Epub 2022 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验