Suppr超能文献

大规模绘制 RNA 结合蛋白互作组图谱揭示 mRNA 生命周期。

Large-scale map of RNA-binding protein interactomes across the mRNA life cycle.

机构信息

Department of Biological Sciences, Columbia University, New York, NY, USA.

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA.

出版信息

Mol Cell. 2024 Oct 3;84(19):3790-3809.e8. doi: 10.1016/j.molcel.2024.08.030. Epub 2024 Sep 19.

Abstract

mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.

摘要

mRNA 在其加工和成熟过程中与 RNA 结合蛋白 (RBP) 相互作用。虽然已经有研究致力于将 RBP 分配到 RNA 底物上,但利用蛋白质-蛋白质相互作用 (PPI) 来研究 mRNA 生命周期各阶段的蛋白质的研究则较少。我们通过免疫沉淀-质谱 (IP-MS) 法对约 100 种内源性 RBP 进行了 RNA 感知型、RBP 为中心的 PPI 图谱绘制,该图谱涵盖了人类细胞中的 mRNA 生命周期,方法是用 RNase 处理和不处理 RBP,并用凝胶过滤色谱-质谱 (SEC-MS) 进行补充。我们鉴定出了 1,125 种蛋白之间的 8,742 个已知和 20,802 个未报告的相互作用,这些相互作用存在于 73%的 IP-MS 鉴定的相互作用中,受 RNA 调控。我们的相互作用组将许多具有未知功能的蛋白质与特定的 mRNA 生命周期阶段联系起来,其中近一半与多个阶段有关。我们通过表征基本同源增强子 (ERH) 的剪接和输出功能,以及通过显示小核核糖核蛋白 U5 亚基 200 (SNRNP200) 在应激过程中与应激颗粒蛋白相互作用,并以不同的方式结合细胞质 RNA,证明了这一资源的价值。

相似文献

1
Large-scale map of RNA-binding protein interactomes across the mRNA life cycle.
Mol Cell. 2024 Oct 3;84(19):3790-3809.e8. doi: 10.1016/j.molcel.2024.08.030. Epub 2024 Sep 19.
2
Large-scale map of RNA binding protein interactomes across the mRNA life-cycle.
bioRxiv. 2023 Jun 8:2023.06.08.544225. doi: 10.1101/2023.06.08.544225.
3
Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle.
Mol Cell. 2024 May 2;84(9):1764-1782.e10. doi: 10.1016/j.molcel.2024.03.012. Epub 2024 Apr 8.
4
Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network.
Brain Res. 2016 Sep 15;1647:79-93. doi: 10.1016/j.brainres.2016.02.047. Epub 2016 Mar 12.
5
RNA-dependent interactome allows network-based assignment of RNA-binding protein function.
Nucleic Acids Res. 2023 Jun 9;51(10):5162-5176. doi: 10.1093/nar/gkad245.
6
Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on 3'UTRs in cisplatin treated cells.
RNA Biol. 2020 Jan;17(1):33-46. doi: 10.1080/15476286.2019.1662268. Epub 2019 Sep 16.
7
mRNA interactome capture in mammalian cells.
Methods. 2017 Aug 15;126:38-43. doi: 10.1016/j.ymeth.2017.07.006. Epub 2017 Jul 11.
9
An Interaction Network of RNA-Binding Proteins Involved in Oogenesis.
Mol Cell Proteomics. 2020 Sep;19(9):1485-1502. doi: 10.1074/mcp.RA119.001912. Epub 2020 Jun 17.
10
Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes.
Cell Rep. 2017 Aug 1;20(5):1187-1200. doi: 10.1016/j.celrep.2017.06.091.

引用本文的文献

1
ERH promotes primary microRNA processing beyond cluster assistance.
Nat Commun. 2025 Aug 25;16(1):7913. doi: 10.1038/s41467-025-63015-y.
3
Phosphoglycerate dehydrogenase stabilizes protein kinase C delta type mRNA to promote hepatocellular carcinoma progression.
Signal Transduct Target Ther. 2025 Jul 18;10(1):236. doi: 10.1038/s41392-025-02304-w.
4
A molecular cartographer's toolkit for mapping RNA's uncharted realms.
Cell Rep. 2025 Jul 22;44(7):115877. doi: 10.1016/j.celrep.2025.115877. Epub 2025 Jun 19.
5
Decoding the interactions and functions of non-coding RNA with artificial intelligence.
Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.
6
Dysregulated RNA-binding proteins and alternative splicing: Emerging roles in autism spectrum disorder.
Mol Cells. 2025 Jun 3;48(8):100237. doi: 10.1016/j.mocell.2025.100237.
7
Neuronal aging causes mislocalization of splicing proteins and unchecked cellular stress.
Nat Neurosci. 2025 Jun;28(6):1174-1184. doi: 10.1038/s41593-025-01952-z. Epub 2025 Jun 2.
8
A lncRNA-mediated metabolic rewiring of cell senescence.
Cell Rep. 2025 Jun 24;44(6):115747. doi: 10.1016/j.celrep.2025.115747. Epub 2025 May 21.
9
RNA-binding proteins: it's better to play in a band.
Genes Dev. 2025 Mar 3;39(5-6):301-303. doi: 10.1101/gad.352667.125.
10
Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2317860121. doi: 10.1073/pnas.2317860121. Epub 2024 Nov 4.

本文引用的文献

1
HydRA: Deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence.
Mol Cell. 2023 Jul 20;83(14):2595-2611.e11. doi: 10.1016/j.molcel.2023.06.019. Epub 2023 Jul 7.
2
Skipper analysis of eCLIP datasets enables sensitive detection of constrained translation factor binding sites.
Cell Genom. 2023 May 4;3(6):100317. doi: 10.1016/j.xgen.2023.100317. eCollection 2023 Jun 14.
3
Structural basis of catalytic activation in human splicing.
Nature. 2023 May;617(7962):842-850. doi: 10.1038/s41586-023-06049-w. Epub 2023 May 10.
4
Dosage sensitivity to Pumilio1 variants in the mouse brain reflects distinct molecular mechanisms.
EMBO J. 2023 Jun 1;42(11):e112721. doi: 10.15252/embj.2022112721. Epub 2023 Apr 18.
5
RNA-dependent interactome allows network-based assignment of RNA-binding protein function.
Nucleic Acids Res. 2023 Jun 9;51(10):5162-5176. doi: 10.1093/nar/gkad245.
6
mRNA recognition and packaging by the human transcription-export complex.
Nature. 2023 Apr;616(7958):828-835. doi: 10.1038/s41586-023-05904-0. Epub 2023 Apr 5.
7
UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.
8
Metadensity: a background-aware python pipeline for summarizing CLIP signals on various transcriptomic sites.
Bioinform Adv. 2022 Nov 10;2(1):vbac083. doi: 10.1093/bioadv/vbac083. eCollection 2022.
9
CORUM: the comprehensive resource of mammalian protein complexes-2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D539-D545. doi: 10.1093/nar/gkac1015.
10
ERH: a plug-and-play protein important for gene silencing and cell cycle progression.
FEBS J. 2023 Feb;290(3):688-691. doi: 10.1111/febs.16669. Epub 2022 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验