Quijano Aloia, Rodriguez-Perez Ana I, Costa-Besada María Alicia, Lopez-Lopez Andrea, Guerra María J, Labandeira-Garcia Jose Luis, Valenzuela Rita
Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
Aging Dis. 2024 Oct 31. doi: 10.14336/AD.2024.0981.
Renin-angiotensin system (RAS) dysfunctions have been associated to life-spam, and aging-related diseases, including neurodegenerative diseases, such as Parkinson's disease, and the neuroinflammatory associated processes. Mitochondrial dysfunctions play a major role in aging-related diseases, including dopaminergic neurodegeneration and neuroinflammation. However, the mechanisms of RAS/mitochondria interactions remain to be clarified. In the present work, we studied the role of major RAS components in the mitochondrial dynamics in dopaminergic neurons and microglia using in vitro and in vivo models. In dopaminergic neurons, we observed that activation of the RAS pro-oxidative/pro-inflammatory axis (Angiotensin II/Angiotensin type-1 receptor, AT1/NADPH oxidase complex) produces a dysregulation of mitochondrial dynamics towards mitochondrial fission, via Drp1 phosphorylation at Ser616 and translocation to mitochondria. However, activation of the RAS antioxidative/anti-inflammatory axis, using Angiotensin 1-7, counteracts this effect. RAS components also modulated the microglial inflammatory response through mitochondrial dynamic changes. After interferon-γ-induced activation of human microglial cells, we observed increased mitochondrial fission and superoxide production that was inhibited by Angiotensin 1-7 treatment. Angiotensin 1-7 also inhibited mitochondrial metabolic changes induced by pro-inflammatory microglial activation. The role of RAS in mitochondrial dynamic changes was confirmed in vivo using the LPS-induced inflammation model in wild-type, AT1-KO, and AT2-KO mice. The effect of Angiotensin 1-7 is mediated by IL-10, specifically by decreasing the post-transcriptional phosphorylated Drp1 form, and translocation of STAT3 to mitochondria. Angiotensin 1-7, acting on mitochondrial Angiotensin 1-7 receptors (Mas/Mas related receptors), increased the phosphorylated form of STAT3 at Ser727, which is mediated by mitochondrial PKA activation. In conclusion, the present findings show the role of RAS components in modulation of mitochondrial dynamics and mitochondrial function, revealing the associated signaling pathways. The results lead to better understanding of the effects of RAS dysfunction in aging-related diseases, and particularly dopaminergic degeneration and neuroinflammation in Parkinson's disease.
肾素-血管紧张素系统(RAS)功能障碍与寿命及衰老相关疾病有关,包括神经退行性疾病,如帕金森病,以及神经炎症相关过程。线粒体功能障碍在衰老相关疾病中起主要作用,包括多巴胺能神经退行性变和神经炎症。然而,RAS/线粒体相互作用的机制仍有待阐明。在本研究中,我们使用体外和体内模型研究了RAS主要成分在多巴胺能神经元和小胶质细胞线粒体动力学中的作用。在多巴胺能神经元中,我们观察到RAS促氧化/促炎轴(血管紧张素II/血管紧张素1型受体,AT1/烟酰胺腺嘌呤二核苷酸磷酸氧化酶复合物)的激活通过丝氨酸616处的动力相关蛋白1(Drp1)磷酸化及向线粒体的转位,导致线粒体动力学失调,趋向于线粒体分裂。然而,使用血管紧张素1-7激活RAS抗氧化/抗炎轴可抵消这种作用。RAS成分还通过线粒体动态变化调节小胶质细胞的炎症反应。在γ干扰素诱导人小胶质细胞激活后,我们观察到线粒体分裂增加和超氧化物生成增加,而血管紧张素1-7处理可抑制这些现象。血管紧张素1-7还抑制促炎性小胶质细胞激活诱导的线粒体代谢变化。在野生型、AT1基因敲除和AT2基因敲除小鼠中使用脂多糖诱导的炎症模型在体内证实了RAS在线粒体动态变化中的作用。血管紧张素1-7的作用由白细胞介素-10介导,具体是通过减少转录后磷酸化的Drp1形式以及信号转导和转录激活因子3(STAT3)向线粒体的转位。血管紧张素1-7作用于线粒体血管紧张素1-7受体(Mas/与Mas相关的受体),增加丝氨酸727处STAT3的磷酸化形式,这是由线粒体蛋白激酶A激活介导的。总之,本研究结果显示了RAS成分在调节线粒体动力学和线粒体功能中的作用,揭示了相关的信号通路。这些结果有助于更好地理解RAS功能障碍在衰老相关疾病中的影响,特别是帕金森病中的多巴胺能变性和神经炎症。