Suppr超能文献

使用深度卷积长短期记忆网络(DeepConv LSTM)架构在边缘设备上进行高效的人类活动识别。

Efficient human activity recognition on edge devices using DeepConv LSTM architectures.

作者信息

Zhou Haotian, Zhang Xiujun, Feng Yu, Zhang Tongda, Xiong Lijuan

机构信息

School of Computer Science, Chengdu University, Chengdu, 610106, China.

School of Artificial Intelligence, Chengdu Polytechnic, Chengdu, 610041, China.

出版信息

Sci Rep. 2025 Apr 22;15(1):13830. doi: 10.1038/s41598-025-98571-2.

Abstract

Driven by the rapid development of the Internet of Things (IoT), deploying deep learning models on resource-constrained hardware has become an increasingly critical challenge, which has propelled the emergence of TinyML as a viable solution. This study aims to deploy lightweight deep learning models for human activity recognition (HAR) using TinyML on edge devices. We designed and evaluated three models: a 2D Convolutional Neural Network (2D CNN), a 1D Convolutional Neural Network (1D CNN), and a DeepConv LSTM. Among these, the DeepConv LSTM outperformed existing lightweight models by effectively capturing both spatial and temporal features, achieving an accuracy of 98.24% and an F1 score of 98.23%. After performing full integer quantization on the best model, its size was reduced from 513.23 KB to 136.51 KB and was successfully deployed on the Arduino Nano 33 BLE Sense Rev2 using the Edge Impulse platform. The device's memory usage was 29.1 KB, flash usage was 189.6 KB, and the model's average inference time was 21 milliseconds, requiring approximately 0.01395 GOP, with a computational performance of around 0.664 GOPS. Even after quantization, the model maintained an accuracy of 97% and an F1 score of 97%, ensuring efficient utilization of computational resources. This deployment highlights the potential of TinyML in achieving low-latency and efficient HAR systems, making it suitable for real-time human activity recognition applications.

摘要

在物联网(IoT)快速发展的推动下,在资源受限的硬件上部署深度学习模型已成为一项日益严峻的挑战,这促使TinyML作为一种可行的解决方案应运而生。本研究旨在使用TinyML在边缘设备上部署用于人类活动识别(HAR)的轻量级深度学习模型。我们设计并评估了三种模型:二维卷积神经网络(2D CNN)、一维卷积神经网络(1D CNN)和深度卷积长短期记忆网络(DeepConv LSTM)。其中,DeepConv LSTM通过有效捕捉空间和时间特征,优于现有的轻量级模型,准确率达到98.24%,F1分数达到98.23%。对最佳模型进行全整数量化后,其大小从513.23 KB减少到136.51 KB,并使用Edge Impulse平台成功部署在Arduino Nano 33 BLE Sense Rev2上。该设备的内存使用量为29.1 KB,闪存使用量为189.6 KB,模型的平均推理时间为21毫秒,大约需要0.01395 GOP,计算性能约为0.664 GOPS。即使经过量化,该模型仍保持97%的准确率和97%的F1分数,确保了计算资源的高效利用。这种部署突出了TinyML在实现低延迟和高效HAR系统方面的潜力,使其适用于实时人类活动识别应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9af/12015284/3e2640f3391b/41598_2025_98571_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验