Dooley Kelly E, Morimoto Michael, Kaszuba Piotr, Krasne Margaret, Liu Gigi, Fuchs Edward, Rexelius Peter, Swan Jerry, Krawiec Krzysztof, Hammond Kevin, Ray Stuart C, Hafen Ryan, Schuh Andreas, Jumbe Nelson L Shasha
Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Viruses. 2025 Jul 2;17(7):943. doi: 10.3390/v17070943.
In just twenty years, three dangerous human coronaviruses-SARS-CoV, MERS-CoV, and SARS-CoV-2 have exposed critical gaps in early detection of emerging viral threats. Current diagnostics remain pathogen-focused, often missing the earliest phase of infection. A virus-agnostic, host-based diagnostic capable of detecting responses to viral intrusion is urgently needed.
We hypothesized that the lungs act as biomechanical instruments, with infection altering tissue tension, wave propagation, and flow dynamics in ways detectable through subaudible vibroacoustic signals. In a matched case-control study, we enrolled 19 RT-PCR-confirmed COVID-19 inpatients and 16 matched controls across two Johns Hopkins hospitals. Multimodal data were collected, including passive vibroacoustic auscultation, lung ultrasound, peak expiratory flow, and laboratory markers. Machine learning models were trained to identify host-response biosignatures from anterior chest recordings.
19 COVID-19 inpatients and 16 matched controls (mean BMI 32.4 kg/m, mean age 48.6 years) were successfully enrolled to the study. The top-performing, unoptimized, vibroacoustic-only model achieved an AUC of 0.84 (95% CI: 0.67-0.92). The host-covariate optimized model achieved an AUC of 1.0 (95% CI: 0.94-1.0), with 100% sensitivity (95% CI: 82-100%) and 99.6% specificity (95% CI: 85-100%). Vibroacoustic data from the anterior chest alone reliably distinguished COVID-19 cases from controls.
This proof-of-concept study demonstrates that passive, noninvasive vibroacoustic biosignatures can detect host response to viral infection in a hospitalized population and supports further testing of this modality in broader populations. These findings support the development of scalable, host-based diagnostics to enable early, agnostic detection of future pandemic threats (ClinicalTrials.gov number: NCT04556149).
在短短二十年间,三种危险的人类冠状病毒——严重急性呼吸综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)暴露了新兴病毒威胁早期检测方面的重大差距。当前的诊断方法仍然以病原体为重点,常常错过感染的最早阶段。迫切需要一种能够检测对病毒入侵反应的、不依赖病毒种类的基于宿主的诊断方法。
我们假设肺部起到生物力学仪器的作用,感染会以可通过次声振动声学信号检测到的方式改变组织张力、波传播和流动动力学。在一项匹配病例对照研究中,我们在两家约翰·霍普金斯医院招募了19名经逆转录聚合酶链反应(RT-PCR)确诊的新冠肺炎住院患者和16名匹配的对照者。收集了多模态数据,包括被动振动声学听诊、肺部超声、呼气峰值流速和实验室指标。训练机器学习模型以从前胸记录中识别宿主反应生物特征。
19名新冠肺炎住院患者和16名匹配的对照者(平均体重指数32.4kg/m,平均年龄48.6岁)成功纳入研究。表现最佳的、未优化的仅振动声学模型的曲线下面积(AUC)为0.84(95%置信区间:0.67 - 0.92)。宿主协变量优化模型的AUC为1.0(95%置信区间:0.94 - 1.0),灵敏度为100%(95%置信区间:82 - 100%),特异性为99.6%(95%置信区间:85 - 100%)。仅从前胸获取的振动声学数据就能可靠地将新冠肺炎病例与对照者区分开来。
这项概念验证研究表明,被动、非侵入性的振动声学生物特征能够在住院人群中检测到宿主对病毒感染的反应,并支持在更广泛人群中对这种方法进行进一步测试。这些发现支持开发可扩展的、基于宿主的诊断方法,以便能够早期、不依赖病毒种类地检测未来的大流行威胁(美国国立医学图书馆临床试验注册中心编号:NCT04556149)。