Roca-Arroyo Andres F, Gutierrez-Rivera Jhonatan A, Morton Logan D, Castilla-Casadiego David A
Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA.
Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
Gels. 2025 Jul 30;11(8):588. doi: 10.3390/gels11080588.
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into rational design strategies for tailoring hydrogel mechanics for specific applications. Recent advances in sequence-defined crosslinkers, dynamic covalent chemistries, and biomimetic approaches have significantly expanded the toolbox for creating hydrogels with precisely controlled viscoelasticity, stiffness, and stress relaxation behavior-properties that are crucial for biomedical applications, particularly in tissue engineering and regenerative medicine.
这篇综述探讨了网络架构广阔的设计空间及其对水凝胶系统力学和粘弹性性能的重大影响。通过研究分子结构、网络连通性与最终整体性能之间的复杂关系,我们为针对特定应用定制水凝胶力学性能的合理设计策略提供了关键见解。序列定义交联剂、动态共价化学和仿生方法的最新进展显著扩展了用于创建具有精确控制的粘弹性、刚度和应力松弛行为的水凝胶的工具库,这些性能对于生物医学应用,特别是组织工程和再生医学至关重要。