Suppr超能文献

肠道微生物组心律失常特征可预测 2 型糖尿病风险。

Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes.

机构信息

ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany; Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.

ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany; Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.

出版信息

Cell Host Microbe. 2020 Aug 12;28(2):258-272.e6. doi: 10.1016/j.chom.2020.06.004. Epub 2020 Jul 2.

Abstract

Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases.

摘要

生活方式、肥胖和肠道微生物群是代谢紊乱的重要风险因素。我们在德国人群队列(KORA)的 1976 名受试者中证明,特定的微生物群成员在其相对丰度上表现出 24 小时的波动,并且在 2 型糖尿病(T2D)中发现了 13 种具有节律性紊乱的分类群。基于该特征的交叉验证预测模型同样可以对 T2D 进行分类。在一个独立的队列(FoCus)中,在 1363 名受试者中证实了微生物振荡的破坏和用于 T2D 分类的模型。这种非节律性风险特征能够在初始采样 5 年后预测 KORA 中的 699 名受试者的 T2D,与 BMI 结合时效果最佳。 shotgun 宏基因组分析将 26 条代谢途径与肠道细菌的昼夜波动功能相关联。因此,节律性分类群的队列特异性风险模式可实现 T2D 的分类和预测,表明昼夜节律与代谢疾病中微生物组之间存在功能联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验