Suppr超能文献

利用胰岛自身抗体预测1型糖尿病的进展:超越简单计数

Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count.

作者信息

So Michelle, Speake Cate, Steck Andrea K, Lundgren Markus, Colman Peter G, Palmer Jerry P, Herold Kevan C, Greenbaum Carla J

机构信息

Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA.

Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

Endocr Rev. 2021 Sep 28;42(5):584-604. doi: 10.1210/endrev/bnab013.

Abstract

Islet autoantibodies are key markers for the diagnosis of type 1 diabetes. Since their discovery, they have also been recognized for their potential to identify at-risk individuals prior to symptoms. To date, risk prediction using autoantibodies has been based on autoantibody number; it has been robustly shown that nearly all multiple-autoantibody-positive individuals will progress to clinical disease. However, longitudinal studies have demonstrated that the rate of progression among multiple-autoantibody-positive individuals is highly heterogenous. Accurate prediction of the most rapidly progressing individuals is crucial for efficient and informative clinical trials and for identification of candidates most likely to benefit from disease modification. This is increasingly relevant with the recent success in delaying clinical disease in presymptomatic subjects using immunotherapy, and as the field moves toward population-based screening. There have been many studies investigating islet autoantibody characteristics for their predictive potential, beyond a simple categorical count. Predictive features that have emerged include molecular specifics, such as epitope targets and affinity; longitudinal patterns, such as changes in titer and autoantibody reversion; and sequence-dependent risk profiles specific to the autoantibody and the subject's age. These insights are the outworking of decades of prospective cohort studies and international assay standardization efforts and will contribute to the granularity needed for more sensitive and specific preclinical staging. The aim of this review is to identify the dynamic and nuanced manifestations of autoantibodies in type 1 diabetes, and to highlight how these autoantibody features have the potential to improve study design of trials aiming to predict and prevent disease.

摘要

胰岛自身抗体是1型糖尿病诊断的关键标志物。自发现以来,它们在识别症状出现前的高危个体方面的潜力也得到了认可。迄今为止,利用自身抗体进行风险预测一直基于自身抗体数量;已有充分证据表明,几乎所有多种自身抗体呈阳性的个体都会发展为临床疾病。然而,纵向研究表明,多种自身抗体呈阳性的个体之间的疾病进展速度差异很大。准确预测进展最快的个体对于高效且信息丰富的临床试验以及识别最有可能从疾病干预中获益的候选者至关重要。随着近期在无症状个体中使用免疫疗法延缓临床疾病方面取得成功,以及该领域朝着基于人群的筛查方向发展,这一点变得越来越重要。除了简单的分类计数外,已有许多研究探讨胰岛自身抗体特征的预测潜力。已出现的预测特征包括分子细节,如表位靶点和亲和力;纵向模式,如滴度变化和自身抗体逆转;以及特定于自身抗体和个体年龄的序列依赖性风险概况。这些见解是数十年前瞻性队列研究和国际检测标准化努力的成果,将有助于实现更敏感和特异的临床前分期所需的精细化。本综述的目的是确定1型糖尿病中自身抗体的动态和细微表现,并强调这些自身抗体特征如何有可能改善旨在预测和预防疾病的试验的研究设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验