Suppr超能文献

碳水化合物的基因编码化学交联

Genetically encoded chemical crosslinking of carbohydrate.

作者信息

Li Shanshan, Wang Nanxi, Yu Bingchen, Sun Wei, Wang Lei

机构信息

Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.

出版信息

Nat Chem. 2023 Jan;15(1):33-42. doi: 10.1038/s41557-022-01059-z. Epub 2022 Oct 10.

Abstract

Protein-carbohydrate interactions play important roles in various biological processes, such as organism development, cancer metastasis, pathogen infection and immune response, but they remain challenging to study and exploit due to their low binding affinity and non-covalent nature. Here we site-specifically engineered covalent linkages between proteins and carbohydrates under biocompatible conditions. We show that sulfonyl fluoride reacts with glycans via a proximity-enabled reactivity, and to harness this a bioreactive unnatural amino acid (SFY) that contains sulfonyl fluoride was genetically encoded into proteins. SFY-incorporated Siglec-7 crosslinked with its sialoglycan ligand specifically in vitro and on the surface of cancer cells. Through irreversible cloaking of sialoglycan at the cancer cell surface, SFY-incorporated Siglec-7 enhanced the killing of cancer cells by natural killer cells. Genetically encoding the chemical crosslinking of proteins to carbohydrates (GECX-sugar) offers a solution to address the low affinity and weak strength of protein-sugar interactions.

摘要

蛋白质 - 碳水化合物相互作用在各种生物过程中发挥着重要作用,如生物体发育、癌症转移、病原体感染和免疫反应,但由于其低结合亲和力和非共价性质,对其进行研究和利用仍然具有挑战性。在这里,我们在生物相容性条件下对蛋白质和碳水化合物之间进行了位点特异性的共价连接工程。我们表明,磺酰氟通过邻近效应与聚糖发生反应,并利用这一点将含有磺酰氟的生物活性非天然氨基酸(SFY)基因编码到蛋白质中。掺入SFY的Siglec - 7在体外和癌细胞表面与其唾液酸聚糖配体特异性交联。通过不可逆地覆盖癌细胞表面的唾液酸聚糖,掺入SFY的Siglec - 7增强了自然杀伤细胞对癌细胞的杀伤作用。对蛋白质与碳水化合物的化学交联进行基因编码(GECX - 糖)为解决蛋白质 - 糖相互作用的低亲和力和弱强度问题提供了一种解决方案。

相似文献

1
Genetically encoded chemical crosslinking of carbohydrate.
Nat Chem. 2023 Jan;15(1):33-42. doi: 10.1038/s41557-022-01059-z. Epub 2022 Oct 10.
2
Genetically encoded chemical crosslinking of RNA in vivo.
Nat Chem. 2023 Jan;15(1):21-32. doi: 10.1038/s41557-022-01038-4. Epub 2022 Oct 6.
4
The sialoglycan-Siglec glyco-immune checkpoint - a target for improving innate and adaptive anti-cancer immunity.
Expert Opin Ther Targets. 2019 Oct;23(10):839-853. doi: 10.1080/14728222.2019.1667977. Epub 2019 Sep 23.
5
Genetically encoded crosslinkers to address protein-protein interactions.
Protein Sci. 2023 May;32(5):e4637. doi: 10.1002/pro.4637.
6
Structural implications of Siglec-5-mediated sialoglycan recognition.
J Mol Biol. 2008 Jan 11;375(2):437-47. doi: 10.1016/j.jmb.2007.10.009. Epub 2007 Oct 11.
7
Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints?
Adv Virus Res. 2024;119:63-110. doi: 10.1016/bs.aivir.2024.03.001. Epub 2024 Apr 8.
8
Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment.
Trends Immunol. 2020 Apr;41(4):274-285. doi: 10.1016/j.it.2020.02.001. Epub 2020 Mar 2.
9
Sialoside analogue arrays for rapid identification of high affinity siglec ligands.
J Am Chem Soc. 2008 May 28;130(21):6680-1. doi: 10.1021/ja801052g. Epub 2008 May 2.

引用本文的文献

1
Thioether editing generally increases the photostability of rhodamine dyes on self-labeling tags.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2426354122. doi: 10.1073/pnas.2426354122. Epub 2025 Jul 18.
2
Metabolic control of glycosylation forms for establishing glycan-dependent protein interaction networks.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2422936122. doi: 10.1073/pnas.2422936122. Epub 2025 Jun 18.
4
Advances in sulfonyl exchange chemical biology: expanding druggable target space.
Chem Sci. 2025 May 6;16(23):10119-10140. doi: 10.1039/d5sc02647d. eCollection 2025 Jun 11.
5
Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation.
Nat Commun. 2025 May 24;16(1):4832. doi: 10.1038/s41467-025-60120-w.
6
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
7
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
8
Molecular mechanism of enhancing antitumor activity through the interaction between monosaccharides and human serum albumin.
Anal Bioanal Chem. 2025 Jan;417(2):251-263. doi: 10.1007/s00216-024-05665-3. Epub 2024 Nov 22.
9
Metabolic Control of Glycosylation Forms for Establishing Glycan-Dependent Protein Interaction Networks.
bioRxiv. 2024 Nov 1:2024.10.30.621210. doi: 10.1101/2024.10.30.621210.
10
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.

本文引用的文献

1
New covalent bonding ability for proteins.
Protein Sci. 2022 Feb;31(2):312-322. doi: 10.1002/pro.4228. Epub 2021 Nov 16.
2
Identification of Protein Direct Interactome with Genetic Code Expansion and Search Engine OpenUaa.
Adv Biol (Weinh). 2021 Mar;5(3):e2000308. doi: 10.1002/adbi.202000308. Epub 2021 Feb 8.
3
Genetically Encoded Quinone Methides Enabling Rapid, Site-Specific, and Photocontrolled Protein Modification with Amine Reagents.
J Am Chem Soc. 2020 Oct 7;142(40):17057-17068. doi: 10.1021/jacs.0c06820. Epub 2020 Sep 25.
4
Developing Covalent Protein Drugs via Proximity-Enabled Reactive Therapeutics.
Cell. 2020 Jul 9;182(1):85-97.e16. doi: 10.1016/j.cell.2020.05.028. Epub 2020 Jun 23.
5
Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment.
Trends Immunol. 2020 Apr;41(4):274-285. doi: 10.1016/j.it.2020.02.001. Epub 2020 Mar 2.
6
Photocaged Quinone Methide Crosslinkers for Light-Controlled Chemical Crosslinking of Protein-Protein and Protein-DNA Complexes.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18839-18843. doi: 10.1002/anie.201910135. Epub 2019 Nov 8.
8
Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo.
J Am Chem Soc. 2019 Jun 19;141(24):9458-9462. doi: 10.1021/jacs.9b01738. Epub 2019 Jun 4.
9
High-affinity anti-glycan antibodies: challenges and strategies.
Curr Opin Immunol. 2019 Aug;59:65-71. doi: 10.1016/j.coi.2019.03.004. Epub 2019 Apr 28.
10
Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms.
Curr Opin Struct Biol. 2019 Jun;56:97-106. doi: 10.1016/j.sbi.2018.12.003. Epub 2019 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验