Suppr超能文献

一种基于活性氧氮杂环丁烷的方法平台,用于鉴定和开发功能变构甲硫氨酸残基的共价配体:细胞周期蛋白依赖性激酶 4 的氧化还原依赖性抑制。

An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4.

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium.

出版信息

J Am Chem Soc. 2022 Dec 21;144(50):22890-22901. doi: 10.1021/jacs.2c04039. Epub 2022 Dec 9.

Abstract

Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.

摘要

活性蛋白质谱分析(ABPP)是一种用于识别和表征功能蛋白质位点和化合物以进行治疗开发的通用策略。然而,绝大多数用于共价药物发现的 ABPP 方法都针对高度亲核的氨基酸,如半胱氨酸或赖氨酸。在这里,我们报告了一种使用氧化还原激活化学标记(ReACT)的蛋氨酸定向 ABPP 平台,该平台利用仿生氧化连接策略用于选择性蛋氨酸修饰。将 ReACT 应用于癌蛋白周期蛋白依赖性激酶 4(CDK4)作为代表性高价值药物靶标,鉴定出三个新的可配基蛋氨酸位点。然后,我们合成了一个带有各种杂环、杂原子和立体化学丰富取代基的蛋氨酸靶向共价配体文库。该文库的 ABPP 筛选鉴定出 1oxF11 是一种变构 M169 位点的 CDK4 共价修饰剂。该化合物在纯化蛋白和乳腺癌细胞中以剂量依赖的方式抑制激酶活性。对 1oxF11 的进一步研究发现,正离子-π 和氢键相互作用显著稳定了该片段在 M169 位点的结合。定量质谱研究验证了 1oxF11 在乳腺癌细胞裂解物中与 CDK4 的连接。进一步的生化分析显示 M169 氧化和 T172 磷酸化之间存在交叉对话,其中 M169 氧化阻止了 CDK4 上激活 T172 位点的磷酸化,并阻止了细胞周期进程。通过鉴定 CDK4 上变构蛋氨酸氧化还原调节的新机制并开发其治疗干预的独特模式,这项工作展示了一个可推广的平台,为开展更广泛的化学蛋白质组学和蛋白质配体发现工作提供了起点,以发现和靶向以前无法成药的蛋氨酸位点。

相似文献

4
Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation.
Circ Res. 2023 Dec 8;133(12):966-988. doi: 10.1161/CIRCRESAHA.122.321836. Epub 2023 Nov 13.
5
JNKs function as CDK4-activating kinases by phosphorylating CDK4 and p21.
Oncogene. 2017 Jul 27;36(30):4349-4361. doi: 10.1038/onc.2017.7. Epub 2017 Apr 3.
8
p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes.
Mol Cell Biol. 2009 Feb;29(4):986-99. doi: 10.1128/MCB.00898-08. Epub 2008 Dec 15.
10
Dual Inhibition of CDK4 and CDK2 via Targeting p27 Tyrosine Phosphorylation Induces a Potent and Durable Response in Breast Cancer Cells.
Mol Cancer Res. 2018 Mar;16(3):361-377. doi: 10.1158/1541-7786.MCR-17-0602. Epub 2018 Jan 12.

引用本文的文献

1
Activity-Based Protein Profiling for Functional Cysteines and Protein Target Identification.
Methods Mol Biol. 2025;2921:331-344. doi: 10.1007/978-1-0716-4502-4_18.
2
Light-Activated Reactivity of Nitrones with Amino Acids and Proteins.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202415976. doi: 10.1002/anie.202415976. Epub 2024 Nov 22.
3
Ligand discovery by activity-based protein profiling.
Cell Chem Biol. 2024 Sep 19;31(9):1636-1651. doi: 10.1016/j.chembiol.2024.08.006.
4
Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics.
Commun Chem. 2024 Apr 10;7(1):80. doi: 10.1038/s42004-024-01162-x.
5
Strain-release alkylation of Asp12 enables mutant selective targeting of K-Ras-G12D.
Nat Chem Biol. 2024 Sep;20(9):1114-1122. doi: 10.1038/s41589-024-01565-w. Epub 2024 Mar 5.
6
Chemoproteomics, A Broad Avenue to Target Deconvolution.
Adv Sci (Weinh). 2024 Feb;11(8):e2305608. doi: 10.1002/advs.202305608. Epub 2023 Dec 14.
7
Mapping the Evolution of Activity-Based Protein Profiling: A Bibliometric Review.
Adv Pharm Bull. 2023 Nov;13(4):639-645. doi: 10.34172/apb.2023.082. Epub 2023 May 20.
8
Cysteine and methionine oxidation in thrombotic disorders.
Curr Opin Chem Biol. 2023 Oct;76:102350. doi: 10.1016/j.cbpa.2023.102350. Epub 2023 Jun 16.

本文引用的文献

1
Reactive chemistry for covalent probe and therapeutic development.
Trends Pharmacol Sci. 2022 Mar;43(3):249-262. doi: 10.1016/j.tips.2021.12.002. Epub 2022 Jan 6.
2
Activity-Based Hydrazine Probes for Protein Profiling of Electrophilic Functionality in Therapeutic Targets.
ACS Cent Sci. 2021 Sep 22;7(9):1524-1534. doi: 10.1021/acscentsci.1c00616. Epub 2021 Aug 19.
3
A proteome-wide atlas of lysine-reactive chemistry.
Nat Chem. 2021 Nov;13(11):1081-1092. doi: 10.1038/s41557-021-00765-4. Epub 2021 Sep 9.
4
Fragment-based covalent ligand discovery.
RSC Chem Biol. 2021 Feb 9;2(2):354-367. doi: 10.1039/d0cb00222d. eCollection 2021 Apr 1.
5
Biotin as a Reactive Handle to Selectively Label Proteins and DNA with Small Molecules.
ACS Chem Biol. 2022 Dec 16;17(12):3270-3275. doi: 10.1021/acschembio.1c00252. Epub 2021 Aug 19.
6
7
Reimagining Druggability Using Chemoproteomic Platforms.
Acc Chem Res. 2021 Apr 6;54(7):1801-1813. doi: 10.1021/acs.accounts.1c00065. Epub 2021 Mar 18.
8
Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis.
J Am Chem Soc. 2020 Dec 23;142(51):21260-21266. doi: 10.1021/jacs.0c09926. Epub 2020 Dec 8.
9
Light-Activatable, 2,5-Disubstituted Tetrazoles for the Proteome-wide Profiling of Aspartates and Glutamates in Living Bacteria.
ACS Cent Sci. 2020 Apr 22;6(4):546-554. doi: 10.1021/acscentsci.9b01268. Epub 2020 Apr 13.
10
Liganding Functional Tyrosine Sites on Proteins Using Sulfur-Triazole Exchange Chemistry.
J Am Chem Soc. 2020 May 6;142(18):8270-8280. doi: 10.1021/jacs.0c00648. Epub 2020 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验