Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA.
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Geroscience. 2023 Oct;45(5):3019-3043. doi: 10.1007/s11357-023-00859-6. Epub 2023 Jul 1.
Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
主要组织相容性复合体 I(MHC-I)在中枢神经系统中的细胞定位和功能之前被认为不存在于大脑中,目前仍在研究中。有报道称,在小鼠、大鼠和人类的整体组织分析中,MHC-I 的表达随着大脑衰老而增加,但细胞定位尚未确定。MHC-I 被认为在阿尔茨海默病(AD)中调节发育性突触消除和 tau 病理。在这里,我们报告说,在新生成的和公开可用的核糖体分析、细胞分选和单细胞数据中,小胶质细胞是小鼠和人类中经典和非经典 MHC-I 的主要来源。对 3-6 个月和 18-22 个月(m.o.)的小鼠进行翻译核糖体亲和纯化-qPCR 分析显示,MHC-I 途径基因 B2m、H2-D1、H2-K1、H2-M3、H2-Q6 和 Tap1 的表达随着年龄的增长而显著增加,而在星形胶质细胞和神经元中则没有。在整个时间过程中(12-23 m.o.),小胶质细胞 MHC-I 逐渐增加,直到 21 m.o. 后加速增加。MHC-I 蛋白在小胶质细胞中富集,并随着年龄的增长而增加。小胶质细胞 MHC-I 的表达,以及星形胶质细胞和神经元中 MHC-I 结合白细胞免疫球蛋白样(Lilrs)和配对免疫球蛋白样 2 型(Pilrs)受体家族的缺失,可能使细胞自主的 MHC-I 信号传递成为可能,并随着小鼠和人类的衰老而增加。在多种 AD 小鼠模型和人类 AD 数据中,通过不同的方法和研究都观察到了小胶质细胞 MHC-I、Lilrs 和 Pilrs 的增加。MHC-I 的表达与 p16INK4A 相关,提示与细胞衰老有关。MHC-I、Lilrs 和 Pilrs 的保守诱导与衰老和 AD 有关,这为细胞自主的 MHC-I 信号调节衰老和神经退行性变过程中小胶质细胞的再激活提供了可能性。