Suppr超能文献

奥密克戎刺突蛋白赋予了 SARS-CoV-2 更强的在人鼻腔组织中的感染性和干扰素抗性。

Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue.

机构信息

HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.

出版信息

Nat Commun. 2024 Jan 30;15(1):889. doi: 10.1038/s41467-024-45075-8.

Abstract

Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, we show that mutations unique to Omicron Spike enable enhanced entry into nasal tissue. Unlike earlier variants of SARS-CoV-2, our findings suggest that Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon metalloproteinases to catalyze membrane fusion. Furthermore, we demonstrate that this entry pathway unlocked by Omicron Spike enables evasion from constitutive and interferon-induced antiviral factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.

摘要

奥密克戎是在 COVID-19 疫苗接种运动之后出现的,取代了之前在全球范围内引起关注的 SARS-CoV-2 变体,并产生了继续传播的谱系。在这里,我们表明奥密克戎在相对于 Delta 的原发性成人上呼吸道组织中表现出更高的传染性。使用 SARS-CoV-2 的重组形式和在气液界面培养的鼻腔上皮细胞,我们表明奥密克戎 Spike 上特有的突变使它能够增强进入鼻腔组织的能力。与 SARS-CoV-2 的早期变体不同,我们的研究结果表明,奥密克戎进入鼻腔细胞不依赖于丝氨酸跨膜蛋白酶,而是依赖于金属蛋白酶来催化膜融合。此外,我们证明奥密克戎 Spike 解锁的这种进入途径使它能够逃避固有和干扰素诱导的抗病毒因子,这些因子限制了 SARS-CoV-2 在附着后的进入。因此,奥密克戎在人类中表现出的更高传染性不仅归因于它对疫苗诱导的适应性免疫的逃避,还归因于它对鼻腔上皮的侵袭能力更强以及对其中存在的细胞内屏障的抵抗力更强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eba/10828397/39f3cbac4414/41467_2024_45075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验